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Abstract

The CP violating phase β
J/ψφ
s is measured in decays of B0

s → J/ψ φ. This measurement
uses 5.2 fb−1 of data collected in

√
s = 1.96 TeV pp̄ collisions at the Fermilab Tevatron

with the CDF Run-II detector. CP violation in the B0
s -B̄

0
s system is predicted to

be very small in the Standard Model. However, several theories beyond the Standard
Model allow enhancements to this quantity by heavier, New Physics particles entering
second order weak mixing box diagrams. Previous measurements have hinted at a
deviation from the Standard Model expectation value for β

J/ψφ
s with a significance of

approximately 2σ. The measurement described in this thesis uses the highest statistics
sample available to date in the B0

s → J/ψ φ decay channel, where J/ψ → µ+µ− and
φ → K+K−. Furthermore, it contains several improvements over previous analyses,
such as enhanced signal selection, fully calibrated particle ID and flavour tagging, and
the inclusion of an additional decay component in the likelihood function. The added
decay component considers S-wave states of KK pairs in the B0

s → J/ψK+K− channel.

The results are presented as 2-dimensional frequentist confidence regions for β
J/ψφ
s and

∆Γ(the width difference between the B0
s mass eigenstates), and as a confidence interval

for β
J/ψφ
s of [0.02,0.52] ∪ [1.08, 1.55] at the 68 % confidence level. The measurement

of the CP violating phase obtained in this thesis is complemented by the world’s most
precise measurement of the lifetime τs = 1.53±0.025 (stat.)±0.012 (syst.) ps and decay
width difference ∆Γ = 0.075± 0.035 (stat.)± 0.01 (syst.) ps−1 of the B0

s meson, with
the assumption of no CP violation.
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Introduction

The reason for the dominance of matter over antimatter is one of the most fundamen-

tal and unanswered questions in physics today. It is expected that equal amounts of

matter and antimatter were produced during the Big Bang; all experimental evidence

however shows that matter dominates in the current universe. This contradiction is

known as the baryon asymmetry problem. Matter particles, called baryons, and anti-

baryons (anti-matter particles) annihilate into photons when they meet. An initially

equal number of bayrons and anti-baryons would leave almost uniquely photons in the

Universe rather than the matter observed in the Universe now. Currently there is no

model which satisfactorily explains this puzzle, but there are certain conditions under

which it can be understood. These are called the Sakharov conditions [1], named after

Andrei Sakharov, who first described the necessary physical requirements for a mat-

ter excess to occur regardless of a specific mechanism. One of these conditions is the

non-conservation of Charge-Parity, referred to as CP violation, which will be described

in Chapter 1, the Theoretical Overview of this thesis. The Standard Model of particle

physics predicts CP violation in certain types of particle interactions [2]. The amount

of CP violation predicted by the Standard Model is, however, too small to explain

the baryon asymmetry of the Universe. This has lead to the development of theories

beyond the Standard Model to explain potential enhancements to the magnitude of CP

violation. Thus, systems where there is a very small expected value of CP violation

provide key areas to test the Standard Model and look for larger than predicted values.

This thesis describes a measurement of the amount of CP violation in B0
s →

J/ψ φ decays, in terms of the CP violating phase β
J/ψφ
s , using 5.2 fb−1 integrated

luminosity of data collected with the CDF Run-II detector at the Fermilab Tevatron.

According to the Standard Model, β
J/ψφ
s is expected to be close to zero [3], thus a

large observed quantity for this parameter would be clear evidence for New Physics.

In the past three years, published measurements of this parameter by the CDF and

DØ collaborations [4, 5] have generated excitement by showing a hints of a disagree-

ment with the Standard Model expectations. A combined result from the two Tevatron

collider experiments [6] found a 2.2σ deviation from the expected value. This thesis

presents an updated and improved measurement of β
J/ψφ
s , with more than twice the

data sample of the previous CDF result [7], enhanced signal selection, particle ID and

flavour tagging, and the inclusion of an additional B0
s → J/ψK+K− component in the

likelihood fit function. In addition to the main results measuring β
J/ψφ
s , this analysis

also yields the world’s most precise measurement of the B0
s meson lifetime, τs, and

decay width difference ∆Γs.

1



Introduction 2

This document is structured as follows: The development and fundamental compo-

nents of the Standard Model are described in Chapter 1, followed by a derivation of

the time development of B0
s → J/ψ φ decays and a review of the current experimental

status of this measurement. Chapter 2 describes the experimental apparatus used to

collect the data analysed for this measurement. The process of selecting a high quality

data sample is discussed in Chapter 3. The combined probability density function used

to form the likelihood to fit the data is laid out in Chapter 4, and its performance is

tested in Chapter 5. Finally, the results are presented in Chapters 6 and 7, describing

fitted values for some parameters of physical interest with the assumption of no CP

violation (β
J/ψφ
s =0.0), and the measurement of β

J/ψφ
s respectively.



Chapter 1

Theoretical Overview

This chapter describes the development of the Standard Model, introduces some of
the areas which are not fully explained by this model, and in this context gives a
theoretical overview of the topic of this dissertation. The parameter of interest for
the measurement described in this thesis, βJ/ψφs , is introduced, and a model for the
time development of the B0

s meson decay channel in which β
J/ψφ
s is measured is

developed. In the final section of this chapter, the current experimental status for
this measurement is presented.

1.1 Standard Model - historical overview

At the end of the 19th Century, the atom was considered to be a solid object made
up of positively charged matter, with negatively charged “corpuscules” arranged non-
randomly throughout to balance the charge [8]. This idea was disproved by one of
the first particle physics experiments, directed by Ernest Rutherford, which showed by
analysing the scattering angles of α particles fired at a thin gold foil that the atom
must have a nucleus several orders of magnitude smaller than its total size [9]. Today
the prevailing theory describing the structure of matter and the forces governing its
interaction is called the Standard Model. Experimentalists are continuously probing
the predictions of this theory, as Rutherford did over a century ago; the apparatus has
changed significantly, and with it the depth of knowledge of physical phenomena. To
date, no experiment has found evidence incompatible with the Standard Model.

The Standard Model (SM) describes fundamental components of matter and their
interactions. The elementary particles making up all matter in this model are fermions,
which can be divided into two categories: quarks and leptons. There are three genera-
tions of fermions, and those of which have been well measured are observed to increase
in mass with each generation. Leptons have integer electric charge and the electric
charge of quarks is fractional. The charge and mass properties of the twelve Standard
Model fermions are summarised in Table 1.1. Fermion interactions are mediated by
bosons, particles which can be thought of as force carriers. The Standard model de-
scribes three of the four forces: strong, electromagnetic and weak; the gravitational
force is not incorporated into this model. The bosons and their properties are listed in
Table 1.2

3



Chapter 1. Theoretical Overview 4

Particle Charge Generation
I mass/c2 II mass/c2 III mass/c2

Leptons -1 e 0.511 MeV µ 105.658MeV τ 1776.84 MeV
0 νe < 225 eV νµ < 0.19 MeV ντ < 18.2 MeV

Quarks +2/3 u 1.5− 3.3 MeV c 1.27+0.07
−11 MeV t 171.3± 1.63 GeV

-1/3 d 3.5− 6.0 MeV s 105+25
−35 MeV b 4.2+0.27

−0.07 GeV

Table 1.1: Properties of fermions, the fundamental particles of matter [10]

1.1.1 Quarks and leptons

The fundamental fermions are spin-1/2 particles, and for each there is an antiparticle
with equal mass and lifetime, but opposite electric charge and magnetic moment. The
existence of antiparticles was predicted by Dirac in 1931 to solve the problem of potential
negative energy solutions to the relativistic relation between energy, momentum and
rest mass of a particle. The 20th Century saw the prediction and observation of almost
all of the fundamental particles of the Standard Model, a notable exception being the
Higgs boson, which is postulated to interact with all massive particles. The search for
the Higgs boson is one of the main goals of the LHC [11] at CERN and will be an
important test of the standard model.

Normal matter is made up of the lightest, first generation fermions. The electron
(e) is a lepton of the first generation, which was discovered in 1896 by J.J Thompson
in cathode ray experiments [12], and was an integral component of his early model of
the atom referred to at the beginning of this section.

Leptons exist as free particles, and have been experimentally observed as such,
however quarks appear to exist only in bound states. This is due to a property which is
not shared by the leptons, namely, in addition to carrying electric charge quarks carry
colour charge which means that they are acted on by the strong force. The strong force
binds quarks in hadron states, currently known hadrons fall into two categories: mesons
and baryons. Mesons contain a quark and an antiquark, baryons contain three quarks,
both types combine quarks such that the hadron has integer electric charge and neutral
colour charge.

The first generation quarks, up and down, are the constituents of neutrons and
protons. Other hadrons can be formed from combinations of the heavier quarks, but
these are unstable and decay with order of picosecond lifetimes to lighter stable states.
Hadrons containing top quarks have not been observed, the t is so much more massive
than other elementary particles that its lifetime is several orders of magnitude shorter
than even the next most massive quark, the bottom quark, and it decays too fast to
hadronise.

Strange particles (now known to contain 2nd generation, strange quarks) were first
detected in cloud chamber tracks of cosmic rays in 1946, with the decay of an neutral
Kaon (s̄d or sd̄) into two charged pions (ud̄ , ūd) [13]. The “strangeness” of these
particles came from the fact that the forces under which they were produced and decayed
differed greatly in time scale. It was found that their behaviour could be explained if
a new quantum number (similar to charge) was assigned to them; the strange particles
were observed as being produced in pairs, and if the pair has opposite “strangeness
number” (S=+1, S=-1) then “strangeness” is conserved.
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As more hadrons were discovered throughout the middle of the 20th century, physi-
cists tried to fit them into a pattern, as Mendeleev had done with the periodic table
of elements. In 1961, Murray Gell-Mann suggested the Eight Fold Way, which placed
the known hadrons into octets according to their charge and strangeness quantum
numbers [14]; he later explained their behaviour by suggesting that they were in fact
composed of even smaller, elementary particles, which he called quarks [12].

The discovery of charmonium, a cc̄ resonance, in e+e− collisions in 1974 at both
SLAC [15] and BNL [16] brought the quark model into good agreement with the lepton
sector. There were at that time four known leptons, and with the addition of charm,
four quarks. This symmetry was spoiled with the detection of the τ lepton, which
introduced a third generation of leptons, that had no equivalent quarks. However, a
third generation of quarks was predicted by Kobayashi and Maskawa [17], as described
in Section 1.2.1. In 1977 a resonance similar to charmonium, but heavier, was observed
in a proton on fixed target experiment at Fermilab [18]. The new particle was a bb̄
bound state, “bottomonium”, and the bottom quark fitted into the quark model as a
third generation, down-type quark. The top quark, the up-type counter part to the b
quark was expected, but not discovered until 1995, again at Fermilab [19], because it’s
large mass required a much higher energy to produce than any other quark.

No evidence has yet been produced for further generations beyond the three ob-
served, and the Standard Model explains the need for three generations (see section
1.2.1). However, some theories predict an even heavier fourth generation including t′

an b′ quarks, which would not be observed at the energies of the current experimental
limits [20].

1.1.2 Four forces

The Standard Model describes the interactions of the fundamental fermions, which
are governed by the exchange of mediators called bosons. This section summarises the
fundamental forces which cause these interactions, the following section will focus in
more detail on the weak interaction which is of most significance for the measurement
described in this thesis.

Force Mediator boson Coupling strength
Name Mass Spin

Strong gluon (x8) 0 1 0.1-1
Weak W± 80GeV/c2 1 10−5

Z0 91GeV/c2 1
EM photon 0 1 1/137

Table 1.2: The fundamental forces [21]

Electromagnetic (EM) interactions bind electrons with nuclei in atoms and molecules,
and are responsible for intermolecular forces. The mediator boson of the electromag-
netic force is the photon, which is massless and interacts with all electrically charged
particles. The theory describing electromagnetic interactions is Quantum Electro Dy-
namics (QED), which is an abelian, gauge invariant field theory with symmetry group
U(1). The coupling strength of the EM force is given by the constant α, in terms of
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the electric charge e and Plank’s constant h:

α =
e2

4πhc
=

1

137.0360...
. (1.1)

The classical EM potential between elementary charges at distance r (the Coulomb
potential) is

Vem = −α
r
. (1.2)

This shows that the range of the EM force is infinite, but it decreases rapidly with
distance.

The Strong force binds neutrons and protons in atomic nuclei, and quarks within
hadrons, it is responsible for the confinement of quarks. Gluons, which are massless
bosons, mediate this force. Analogous to photons in EM interactions, gluons act on
charge, but in strong interactions it is colour charge rather than electric charge. Quan-
tum Chromodynamics (QCD) is the theory of strong interactions, and it contains six
charges, called “colours”, where colour is simply a label for an internal degree of free-
dom. It is a non-abelian gauge theory with symmetry group SU(3). Quarks carry one
of red, blue or green charge and antiquarks carry the equivalent anticolours. Because
of this, colour neutral objects can be formed from two quarks as qcq̄

′
c̄ (mesons) or three

quarks as qrq
′
bq
′′
g (baryons). An important difference between QED and QCD is that glu-

ons themselves carry colour charge, whereas photons are not charged. Gluons carry one
colour and one anticolour, and as they act on colour charge they can interact between
themselves. With three colour charges and three anti colours, it would be expected
that there could be 32 gluons, but one is a colourless singlet state, so there are eight
interacting gluons.

Quark confinement is caused by the gluon self-interactions; if an attempt is made
to separate two quarks, there comes a point when it would take less energy to form a
new QQ̄ pair (a meson) than to continue pulling apart. This can be better understood
by looking at the static QCD potential, a convenient classical approximation to the full
field theory treatment:

Vs = −4

3

αs
r

+ kr (1.3)

The second term in Eqn. 1.3 grows linearly with distance, where k is a constant,
which means that the force between them grows stronger as the quarks are pulled apart.
The strong force conserves flavour, the quark type such as u or b, leading to production
of quark anti-quark pairs under this interaction.

Both quarks and leptons can undergo weak interactions, they carry the weak charge
g. The strength of the weak interaction is about 3 orders of magnitude smaller than
the EM interaction; weak interactions are heavily disfavoured compared to EM and
strong interactions. In spite of this, weak interactions are experimentally accessible.
For example, neutrinos can interact due to the weak force, but not the EM or strong
forces as they carry no electric or colour charge. Weak interactions can also cause flavour
change between quarks, which is forbidden under the strong force. The “weakness” of
these interactions comes from the fact that they are governed by massive W± and Z0

bosons. The large mass of these vector bosons gives rise to very short range interactions.
Figure 1.1.2 shows examples of interactions governed by the EM, strong and weak forces.
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�γ
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e+ e−
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Q Q
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ν̄µ ν̄µ

e− e−

αw

αw

Figure 1.1: Comparison of (top) EM, (centre) strong and (bottom) weak boson exchanges

Electroweak theory unifies the weak and electromagnetic forces. Glashow, Weinberg
and Salam suggested in the late 1960s that weak and EM interactions could have the
same origins [21]. They postulated a set of four massless bosons as a triplet: Wµ

belonging to the group SU(2) and a singlet Bµ of the group U(1). In group theory
terms, this model is described as SU(2) ⊗ U(1). In the Standard Model, the Higgs
mechanism [22] gives mass to the weak bosons via spontaneous symmetry breaking.
This mechanism introduces an extra field, the Higgs field, and due to the shape of the
Higgs potential interactions with this field result in a mass term in the Lagrangian.
This leads to three massive bosons, W+

µ ,W
−
µ and Z0

µ, with the photon, Aµ remaining
massless. The Higgs mechanism also predicts at least one new scalar particle, the
Higgs boson which has not yet been detected. The weakly interacting massive bosons
are linear combinations of the triplet and singlet states in the model. The Standard
Model Lagrangian incorporating the electroweak and strong forces, is described as being
invariant under the SU(3) ⊗ SU(2) ⊗ U(1) transformation. Three forces have been
discussed in this section. The fourth, gravity, has so far not been integrated into the
Standard Model.

1.1.3 Conservation laws

The Standard Model is built on symmetries (invariance properties) and their asso-
ciated conservation laws. This subsection describes some of the invariance properties
of the interactions introduced in Section 1.1.2, which are of importance to the measure-
ment presented in this thesis.
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Parity

The parity operator, P , transforms a wave function as

Pψ(r) = ψ(−r) (1.4)

where r is the spatial position vector. It is clear from Eqn. 1.4 that applying P again
brings back the original function, so P is a unitary operator, P 2 = 1, and it has
eigenvalues P = ±1.

Until 1956, it was assumed that parity invariance was a fundamental law, but there
had been no specific experimental tests of this. Lee and Yang found that there was
existing evidence from experiments for parity invariance in strong and EM interactions,
but not for weak processes. The status of parity invariance in weak interactions was then
tested by C.S. Wu using radioactive Cobalt 60 nuclei [12] in an experiment suggested
by Lee and Yang [23]. In these experiments the nuclei had their spins aligned with
a magnetic field, and when they underwent beta decay, the direction of the emitted
electron was measured. If the electrons were emitted uniformly with respect to the spin
direction it would imply that parity was conserved. By applying the parity operator to
the system, the spatial coordinates are inverted, but spin is invariant under parity, so a
preferential direction for the emitted electrons would be flipped in the parity inverted
Universe thus parity would be violated as this would be distinguishable from the original
Universe. Wu’s experiment showed that the majority of electrons were emitted opposite
to the direction of the spin of the nuclei and therefore provided the first evidence of
parity violation in the weak interaction.

The violation of parity symmetry in weak interactions is most evident in the neutrino
system. As was previously mentioned, neutrinos carry no EM or colour charge, so they
only interact via the weak force. Treating neutrinos as massless particles (their mass has
been measured to < 20MeV ), it can be stated that neutrinos with positive helicity (spin
aligned with velocity) are right handed, and with negative helicity (spin anti-parallel to
velocity) are right handed. The parity operation inverts the handedness of the particle,
so if parity was conserved it would be expected that left and right handed neutrinos
would behave in the same way. However, when this was tested experimentally, it was
discovered that all observed neutrinos are left handed, and all observed antineutrinos
are right handed.

Charge conjugation

The action of the charge conjugation operator C is to reverse the sign of the charge
and magnetic moment of a particle. Classical electrodynamics is invariant under this
operation,for example, Maxwells’s equations are equivalent if all charges, potentials
and fields reverse their signs. In terms of quantum mechanics, the charge conjugation
operator also changes the sign of all internal quantum numbers such as lepton number
and strangeness, so it has the effect of converting a particle into its antiparticle.

C |p〉 = |p̄〉 (1.5)

The case of neutrinos under the parity operation was discussed previously, but it is
also of interest to see what happens under charge conjugation. The C operator trans-
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forms a particle into its antiparticle, so a left handed neutrino becomes a left handed
antineutrino. It was already explained that only right handed antineutrinos interact,
so it is clear that the weak interaction is not invariant under charge conjugation.

Charge-Parity conjugation

The effects on neutrinos under P and C operations discussed in the two previous
sections indicate that the weak interaction does not conserve either symmetry. How-
ever, when the C and P operators (CP ) are applied together a left handed neutrino is
transformed into a right handed antineutrino, and this is what is observed experimen-
tally. It was thought that CP symmetry was conserved in weak interactions, until 1964,
when neutral Kaons were observed decaying to two different CP eigenstates, therefore
violating CP invariance [21]. This has significant implications, which will be discussed
in section 1.4.

Charge-Parity-Time

CPT theorem states that under the operation of time reversal, parity, and charge
conjugation, there is an exact symmetry for any interaction. This is based on very
generalised principles of quantum field theory, it is impossible to construct a quantum
field theory where CPT invariance is violated. A consequence of this theorem is that
if either time reversal (T ) or charge-parity (CP ) invariance is violated, the other must
also be broken.

Summary

The symmetries and related conservation laws which particularly affect the mea-
surement in this dissertation have been introduced in the preceding sub-sections, and
are summarised in Table 1.3.

Conserved quantity strong electromagnetic weak
Parity (P ) yes yes no
Charge conjugation (C) yes yes no
CPT yes yes yes
CP (or T ) yes yes violation of O(10−5)

Table 1.3: Summary of conserved quantities under strong, EM and weak interactions in the
Standard Model

1.2 Weak Interactions

In order to maintain flavour conservation in the lepton sector, and yet allow cross-
generational interactions between quarks, there has to be a significant difference between
the actions of the weak force on leptons and quarks. From experimental observations,
lepton flavour seems to be largely conserved for charged leptons; in charged current weak
interactions (W± exchange), transitions such as s → u are not uncommon, although
they are rarer than transitions within one generation such as u→ d.

In the early 1960s, when this problem was first under consideration, only u, d and s
quarks had been discovered. At this time, Cabibbo suggested that the strength of the
interaction governing the process d→ u+W− carries a factor cos(θc) and the process
s → u + W− a factor sin(θc) [24]. The relative rates of these two examples implies
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that θc must be small. This solution was successful in resolving the rates of many
interactions, but one significant problem indicated that this was not the full answer:
the rate of K0 → µ+µ− measured experimentally was far below the calculated rate
under Cabibbo’s theory. In 1970, Glashow, Iliopoulos and Maiani (GIM) proposed
that the way to fix this was to introduce a fourth quark [25] (this was four years
before the observation of the J/ψ = cc̄ resonance). This quark would couple more
strongly to s than to d quarks, and importantly, introduced a new diagram in K0

decays which cancelled the equivalent for the u quark, therefore reducing the expected
decay amplitude.

Combining the GIM mechanism with Cabibbo theory leads to the conclusion that
the quark states acted on by the charged weak current are not the physical states, but
states rotated by the Cabibbo angle θc

(
d′

s′

)
=

(
cosθc sinθc

−sinθc cosθc

)(
d
s

)
(1.6)

Eqn. 1.6 shows that the d′ and c′ states which interact via the charged weak current
are linear combinations of the physical d and s states. The discovery of the c quark in
1974 gave strong evidence to this model, and the extension by Kobayashi and Maskawa
to three generations allowed for third generation mixing when the b quark was later
discovered.

1.2.1 CKM matrix

The proposed extension by Kobayashi and Maskawa [17] is called the CKM matrix, it
describes the weak currents between the three generations of quarks. This was suggested
before the discovery of the b quark, to incorporate the CP violation observed in the
neutral kaon system (introduced in Section 1.1.3). When considering the number of
generations in the Standard Model, and in the matrices in Equations 1.6 and 1.7 it
should be noted that an N × N matrix has N(N − 1)/2 real parameters and (N −
1)(N − 2)/2 non-trivial phases. For the 2D case, this means that there is one real
parameter, the Cabibbo angle θc, for the 3D case there are three real angles and one
phase. This phase in the the 3× 3 case is crucial, because it introduces the possibility
of removing invariance under time reversal due to the way it enters the wave function.
The principal of CPT -invariance, and CP -violation will be discussed in section 1.4.

The CKM matrix is a 3× 3 unitary matrix:




d′

s′

b′


 =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb







d
s
b


 (1.7)

which can be parameterised in terms of three mixing angles and a CP -violating phase.
This parameterisation can be represented as

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s232s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 (1.8)
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where sij = sinθij, cij = cosθij and δ is the CP -violating phase. The indices {ij}
give the generation numbers involved in the interaction. Experimental evidence shows
that transitions between generations have very small probability amplitudes, so it is
reasonable to use a small angle approximation to simplify the above matrix. The
Wolfenstein parameterisation [26] uses this principle to write the matrix as

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 +O(λ4) (1.9)

where the following substitutions have been made

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2

s23 = Aλ2 = λ

∣∣∣∣
|Vcb|
|Vus

∣∣∣∣

s13e
iδ = V ∗

ub = Aλ3(ρ+ iη) =
Aλ3(ρ̄+ iη̄)

√
1− A2λ4

√
1− λ2[1− A2λ4(ρ̄+ iη̄)]

(1.10)

This parameterisation of the CKM matrix illustrates that transitions within one
generation (diagonal elements) are favoured over cross-generational transitions which
are given by the smaller, off diagonal elements.

Determining the values of the CKM matrix elements gives an important constraint
on the Standard Model, and has the potential to reveal evidence of physics beyond the
Standard Model, for example in processes which are dominated by loop contributions.
The combined experimentally measured values for the CKM matrix elements give the
following matrix, [27].

VCKM =




0.97419± 0.00022 0.2257± 0.0010 0.00359± 0.00016
0.2256± 0.0010 0.97334± 0.00023 0.0415+0.0010

−0.0011

0.00874+0.00026
−0.00037 0.0407± 0.0010 0.9991333+0.000044

−0.000043


 (1.11)

1.2.2 Unitarity conditions

The unitarity condition of the CKM matrix can be used to formulate a geometric
representation of the CKM parameters. This allows observables to be identified, which
can be measured experimentally to test the Standard Model assumptions going into
the matrix. This section explains how unitarity triangles can be formed from the
relationship between elements of the matrix, and why these are of interest. The unitarity
of the CKM matrix gives the relation

3∑
i=1

|Vij|2 = 1; j = 1, 2, 3 (1.12)
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Information about the CP violating weak phases can be gained from the relations

3∑
i=1

VjiV
∗
ki =

3∑
i=1

VijV
∗
ik = 0; j, k = 1, 2, 3 j 6= k (1.13)

These form triangles in the complex plane, which are not affected by changes in phase
convention (beyond a possible rotation of the triangle). The triangles are of varied
shapes but all have the same area, equal to half of the Jarlskog invariant [28]:

J = Im[V ∗
kmVlmVknV

∗
ln] = Im[V ∗

mkVmlVnkV
∗
nl] (1.14)

This can be derived from the relations in Eqn. 1.13, and is a measure of CP viola-
tion in the Standard Model which is independent of phase convention. Experimental
measurements combined to estimate J give a value of O(10−5) [27].

Focusing on the three triangles which are relevant in neutral meson mixing selects
the triangles formed from products of the columns of the CKM matrix

V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = δds = 0 (1.15)

which corresponds to CP violation in K meson decay,

V ∗
usVub + V ∗

csVcb + V ∗
tsVtb = δsb = 0 (1.16)

corresponding to CP violation in B0
s meson decay, and

VudV
∗
ub + VtsV

∗
cs + VtbV

∗
cb = δdb = 0 (1.17)

which describes CP violation in B0
d meson decay.

Figure 1.2: Three unitarity triangles of the CKM matrix. Corresponding to Eqn. 1.15 (top).
Eqn. 1.16 (middle) and Eqn. 1.17 (bottom).

The triangles parameterised in Eqn.s 1.15-1.17 are shown in figure 1.2. This thesis



Chapter 1. Theoretical Overview 13

describes a measurement of the smallest angle of the B0
s mixing triangle, the second in

Figure 1.2.

Measurements of all parameters (sides and angles) of these triangles is an over-
constraint, and can therefore be used to test the unitarity condition. Experimentally,
it is easier to measure the larger interior angles, so the best known triangle is the one
corresponding to 1.17, which is generally referred to as “The Unitarity Triangle”. This
has been well constrained by studies of the B0 − B̄0 system, and is a good reference
point for the measurement in this thesis. This canonical unitarity triangle is shown
in its usual representation, normalised form, in Figure 1.3. In this representation, one
vertex is set at (0, 0) and the sides are normalised so that a second vertex is at (1, 0)
and the third is at (ρ̄, η̄), which is defined as

ρ̄ ≡
(

1− λ2

2

)
ρ

η̄ ≡
(

1− λ2

2

)
η (1.18)

Figure 1.3: Normalised unitarity triangle of the B0 − B̄0 system

The angles of the canonical triangle shown in Figure 1.3 are defined as

β ≡ φ1 = arg

(
−V

∗
cbVcd
V ∗
tbVtd

)

α ≡ φ2 = arg

(
− V ∗

tbVtd
V ∗
ubVud

)

γ ≡ φ3 = arg

(
−V

∗
ubVud
V ∗
bbVcd

)
(1.19)

This thesis focuses on the measurement of the angle βs, which is the equivalent in the Bs

system of the angle β in 1.19. This angle is proportional to the phase of the transition
amplitude in Bs− B̄s mixing in the phase convention chosen in Equations 1.9 and 1.10,
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which will be discussed further in Section 1.4.1. It is defined as

βs ≡ arg

(
−VtsV

∗
tb

VcsV ∗
cb

)
(1.20)

1.3 The production and decay of B hadrons

Before moving to the main topic of this thesis, CP violation in neutral B mesons, it
is important to understand the mechanisms through which the studied B hadrons are
produced and decay.

1.3.1 B production in pp̄ collisions

The data analysed in this thesis are collected in pp̄ collisions at the Fermilab Teva-
tron. The experimental equipment and data acquisition will be described in detail in
Chapter 2. In pp̄ collisions, b quarks are primarily produced through QCD interactions
[29]. To first order, the majority are pair produced in either of

• Flavour creation
This can occur by two gluons from the colliding beam protons undergoing hard
scattering to produce a bb̄ pair, or the annihilation of a quark anti-quark pair can
produce the same outcome. This is also called direct production and is shown in
the upper two diagrams in Figure 1.4.

• Gluon splitting
After hard scattering, a bb̄ pair can be produced from a gluon during fragmenta-
tion, shown in the lower left diagram in Figure 1.4.

and a smaller number are produced in

• Flavour excitation
A b quark which is one of the sea quarks of the colliding proton or anti proton
undergoes hard scattering with another parton from the other colliding beam
particle, shown in Figure 1.4.

After production, the b quarks undergo hadronisation. This occurs when the bb̄ pair
moves apart, feeling the effect of the strong force described in Section 1.1.2; the colour
field of a b quark creates a qq̄ pair from the vacuum and forms a bq̄ meson with the q̄.
In the case of B0

s mesons, the qq̄ pair is ss̄, a B0
s is made up of b̄s, and a B̄0

s is bs̄.

1.3.2 B meson lifetimes

Measurement of the Bs lifetime is an important component of this analysis. As part
of the simultaneous measurement of the B0

s lifetime τs, the width difference between the

heavy and light B0
s eigenstates ∆Γs, and the CP violating phase β

J/ψφ
s , the averaged

lifetime of the the heavy and light Bs states is presented. Not only is this an important
cross check of the likelihood fitter, being a well constrained value in the Standard Model,
it is also a significant measurement in its own right.
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b

b
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gluon fusion
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q

qq annihilation

b

b

g

g
g

b

b

gluon splitting

g

q q

b

b

flavour excitation

Figure 1.4: Lowest order diagrams for b production processes in pp̄ interactions

This section gives a brief introduction to the theoretical concepts of B meson life-
times, but does not go into further detail as this thesis primarily describes a CP viola-
tion measurement.

The spectator quark model is the simplest model of B meson lifetimes. It states that
in mesons with unbalanced valance quark masses, the lifetime will be dominated by the
decay of the heavier quark. In the case of the Bs meson, the b quark is about 400×
heavier than the s quark mass, so the s can be treated as a “spectator”in the decay.
Following from the assumption that the lighter quark can be essentially ignored, is the
prediction that the lifetimes of all flavours of B mesons, independent of the mass of the
lighter quark, should be equal. This is not in agreement with experimental observations,
which give a hierarchy of

τBc < τBs ≈ τBd < τBu (1.21)

The favoured decay of the b quark in the Standard Model is to a c quark via a virtual
W boson, and it can decay (with far less frequency) to a u quark. The b quark predicted
decay width, Γb (≡ 1/τb) can be written in terms of the muon decay width [13], which
is well known.

Γµ =
G2
F

192π3
m5
µ =⇒ Γb ∼ G2

F

192π3
m5
b |Vcb|2 × (2× 3 + 3) (1.22)

where GF is the Fermi coupling constant, |Vcb| is the CKM matrix element for the
b → c transition and the final multiplicative factor comes from the extra available
decay channels to the b quark: 3 quarks, 3 antiquarks and 3 colours of quarks. From
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Equation 1.22 it is possible to construct a relation between the µ and b lifetimes:

τb ∼ τµ

(
mµ

mb

)5
1

9

1

|Vcb|2 (1.23)

With the central value of the current measurement of |Vcb| = 0.0415 this predicts a
lifetime of around 1.4 ps, which is of the order of the measured B meson lifetimes.

To understand the hierarchy of the B mesons lifetimes it is necessary to look at
the decay channels open to the individual mesons according to the light quark content.
Three effects which can alter different flavours of B meson lifetimes differently are
Pauli Interference (PI), Weak Annihilation (WA) and Weak Exchange (WE). Pauli
Interference is specific to Bu mesons, and occurs because both the external W and
internal (colour suppressed) W decays have the same final state and can therefore
undergo interference. The neutral B mesons have different final states for these two
decay types, so there is no interference. Figure 1.5 shows the effect of PI in Bu and Bd

(equivalent to Bs) mesons.

Figure 1.5: Pauli Interference

The effect of Pauli Interference on the charged B mesons is to lengthen the lifetime
relative to a decay without interference. Weak Annihilation (charged mesons) and
Weak Exchange (neutral mesons), shown in Figure 1.6, have the effect of reducing
the lifetime of the meson, by providing an additional decay channel. However, WE is
helicity suppressed as the B meson spin of zero means that its q and q̄ have opposite
helicity. WA is a smaller effect than PI, so the overall contribution to the B+ lifetime
is a net increase in length. Considering these effects brings good agreement with the
experimentally observed hierarchy of B meson lifetimes.

To go beyond the prediction of the hierarchy of B meson lifetimes, it is necessary
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to look to a QCD based model, Heavy Quark Expansion (HQE) theory. This model
expands the decay width, ΓB in powers of the inverse b quark mass, 1/mb [30]

ΓB ∼ |Vij|2
∑
n

cn(µ)

(
1

mb

)n

〈Hb|ob|Hb〉 (1.24)

where cn are the Wilson coefficients and |Vij is the CKM matrix element for the b decay
transition. To first order, this gives the Spectator Quark model described previously.
The terms in 1/m2

b separate mesons and baryons, describing the helicity suppression
in mesons. The effects of PI and weak interference are brought in with the terms on
1/m3

b . This theory predicts lifetime ratios as

τ(B+)

τ(B0)
= 1.06± 0.02,

τ(B0
s )

τ(B0)
= 1.00± 0.01,

τ(Λ0
b)

τ(B0)
= 0.88± 0.05. (1.25)

1.4 CP violation and mixing in neutral mesons

It has been shown in the preceding sections that CP violation arises in weak inter-
actions via the quark mixing matrix. This section will look at the generalised case of
CP violation in mixing and decay of neutral mesons (K,D,Bd and Bs), before focusing
specifically on the Bs − B̄s system which is under investigation in this thesis.

One of the most significant unsolved questions in particle physics today, is the dis-
crepancy between the small fraction of CP violation predicted by the Standard Model,
and the observed Baryon Asymmetry of the Universe (BAU). As matter and antimatter
particles are pair produced in the strong interaction (due to flavour conservation), it
would be expected that these would be present in equal quantities, but the present
matter-antimatter asymmetry implies that a large source of CP violation should be
present to account for the prevalence of matter over antimatter. It is therefore impor-
tant to constrain the SM predictions with experimental measurements, as a measure-
ment of CP violation significantly over the expected level could be an indicator of New
Physics.

Figure 1.6: Weak annihilation/ exchange
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Mixing in neutral mesons

To consider meson mixing, take a neutral meson system with flavour eigenstates X0

and X̄0. An initial state which is a superposition of these states is

|ψ(0)〉 = a(0)|X0〉+ b(0)|X̄0〉 (1.26)

it evolves in time as
|ψ(t)〉 = a(t)|X0〉+ b(t)|X̄0〉 (1.27)

The time evolution of this system can be calculated using an approximate formalism
developed by Weisskopf and Wigner [31]. This uses an effective Hamiltonian H, which
can be written in terms of M and Γ

H = M− i

2
Γ =

(
M11 M12

M∗
12 M22

)
− i

2

(
Γ11 Γ12

Γ∗12 Γ22

)
(1.28)

The diagonal elements of M and Γ are flavour conserving, the off-diagonal elements
change the flavour of quarks being acted on. Eigenvectors of H are mass eigenstates of
the X0 system, the heavy and light states XH and XL

|XL〉 = p|X0〉+ q|X̄0〉
|XH〉 = p|X0〉 − q|X̄0〉 (1.29)

which is normalised with |q|2 + |p|2 = 1.

The real and imaginary parts of the eigenvalues eL,H of H which correspond to
|XL,H〉 give the mass and decay width of the mass states. The mass and width differ-
ences between the light and heavy states are given by:

∆m ≡ mH −mL = <(eH − eL)

∆Γ ≡ ΓH − ΓL = −2=(eH − eL) (1.30)

Solving to find the eigenvalues gives

eH,L =

(
m− i

2
Γ

)
±

√(
M12 − i

2
Γ12

) (
M∗

12 −
i

2
Γ∗12

)
(1.31)

and (
q

p

)2

=
M∗

12 − (i/2)Γ∗12

M12 − (i/2)Γ12

(1.32)

Time development

The amplitudes of decay of the meson X (X̄) to the final state f (f̄) are

Af = 〈f |H|X〉, Āf = 〈f |H|X̄〉 (1.33)

Af̄ = 〈f̄ |H|X〉, Āf̄ = 〈f̄ |H|X̄〉 (1.34)

where H is the weak interaction Hamiltonian. If CP is conserved, the amplitudes of
Af and Āf̄ should be identical.
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With relatively small ∆Γ/Γ it is not possible to experimentally separate the mass
eigenstates in time evolution. Consider the time evolution of an initially pure state
|X0〉 or |X̄0〉 after time t:

|X(t)〉 = g+(t)|X0〉 − q

p
g−(t)|X̄0〉

|X̄(t)〉 = g+(t)|X̄0〉 − q

p
g−(t)|X̄0〉

where

g± =
1

2

(
e−imH t−

1
2
ΓH ± e−imLt−

1
2
ΓL

)
(1.35)

Combining Equations 1.33- 1.35 leads to the decay rates |〈f |X0(t)〉|2, |〈f |X̄0(t)〉|2

|〈f |X0(t)〉|2
= (|Af |2 + |(q/p)Āf |2)cosh(∆Γt/2)

+ (|Af |2 − |(q/p)Āf |2)cos(∆Mt)

+ 2<((q/p)A∗f Āf )sinh(∆Γt/2)

− 2=((q/p)A∗f Āf )sin(∆mt) ¦ e−Γt (1.36)

|〈f |X̄0(t)〉|2
= (|(p/q)Af |2 + |Āf |2)cosh(∆Γt/2)

− (|(p/q)Af |2 − |Āf |2)cos(∆Mt)

+ 2<((q/p)Af Ā
∗
f )sinh(∆Γt/2)

− 2=((q/p)Af Ā
∗
f )sin(∆mt) ¦ e−Γt (1.37)

and their complex conjugates which correspond to substituting the amplitudes from
Eqn. 1.34 for those of Eqn. 1.33 in the above equations. The specific case of the time
development of the B0

s meson system will be derived in section 1.5.

Categories of CP violation

CP violation occurs in meson decays through three effects [31], which are explained
below focussing on their relevance in the Bs − B̄s system:

1. CP violation in decay
Also called direct CP violation, this occurs when the amplitude of decay to a final
state is not the same as the amplitude of the CP conjugate of the initial state
decaying to the CP conjugate of the final state:

∣∣∣∣
Āf̄
Af

∣∣∣∣ 6= 1 (1.38)

Direct CP violation is the only possible CP violating effect in charged meson
decays, which cannot undergo mixing. In the B0

s → J/ψ φ channel, the Standard
Model CP -violating weak phase in decay is strongly Cabibbo suppressed by a
factor of λ2 [32] (where λ is the Wolfenstein parameter of the CKM matrix -
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Section 1.2.1). This means that to a high order approximation, it is possible to
make the assumption that there is no direct CP violation in B0

s → J/ψ φ decays,
and treat the amplitudes as |Af | = |Āf̄ |.

2. CP (and T) violation in mixing
This type of CP violation is defined as

∣∣∣∣
q

p

∣∣∣∣ 6= 1 (1.39)

In the Bs meson system, the CKM model predicts [33] |q/p| = 1 + O(10−3). In
semileptonic Bs decays this leads to a charge asymmetry in the decay products,
but in B0

s → J/ψ φ, the channel used in this measurement, the factor |q/p| is
not isolated, therefore CP violation in mixing is not directly measured in this
analysis.

3. CP violation due to interference between decays with and
without mixing

s

b c

s

s

c

u,c,t
b

u,c,t
s

s

b

s

c

s

c

s

b

Figure 1.7: [upper] B0
s → J/ψ φ decay without mixing; [lower] B0

s → J/ψ φ decay via mixing

In decays to a common CP eigenstate, CP violation can occur independently of
the previous two cases, because of interference between decays without mixing:
X0 → f and via mixing: X0 → X̄0 → f to the same final state. This is defined
by

=(λf ) 6= 0 (1.40)

where

λf ≡ q

p

Āf̄
Af

(1.41)
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This type of CP violation is possible in the B0
s → J/ψ φ mode because J/ψφ is

a common final state for B0
s and B̄0

s .

1.4.1 CP violation measurements in neutral meson systems

K0 − K̄0 mixing

The K0 system was the first neutral meson system to be comprehensively studied.
The K0 contains an anti-strange quark and therefore carries a strangeness of S = +1.
The antiparticle neutral kaon state, K̄0 differs by strangeness ∆S = 2 from the particle
state; applying the CP operator to |s̄d〉 gives |sd̄〉. The existence of the two discrete
states was shown by Gell-Mann and Pais in 1954 [34], under the assumption that CP
invariance was conserved. Mixing between the particle and antiparticle states was
observed by selecting a pure K0 beam, which, after a few metres was found to combine
both K0 and K̄0 states. The weak eigenstates of the neutral Kaon system are

|KS >=
1√
2

(|K0〉+ |K̄0〉)

|KL >=
1√
2

(|K0〉 − |K̄0〉) (1.42)

where KS is a short lived, state and KL is long lived. The CP of these states can be
determined by applying the CP operator

CP|KS〉 =
1√
2

(|K̄0〉+ |K0〉) = +|KS〉

CP|KL〉 =
1√
2

(|K̄0〉 − |K0〉) = −|KL〉 (1.43)

The neutral Kaon system was also the source of the first observation of CP violation.
After the discovery of parity violation, it was thought that the combined effect of CP
conjugation would be a symmetry of the weak interaction. However, this was disproved
in 1964, when it was found that the Kaon eigenstate labeled as CP odd, KL, could
decay to a CP even final state with a branching ratio of O(10−3). The CP even state,
KS, decays to a two pion final state which is CP even (CP|ππ〉 = +|ππ〉), the favoured
decay mode of the KL is to three pions (CP|πππ〉 = −|πππ〉), as expected for a CP
odd state. Cronin and Fitch discovered [35] that the KL state could also decay to |ππ〉,
with a rate of

Γ(KL → π+π−)

Γ(KS → π+π−)
= (2.0± 0.4)× 10−3 (1.44)

This implies that the weak eigenstates are not exact CP eigenstates, and that there is
a small fraction of indirect CP violation in this system.

D0 − D̄0 mixing

Evidence for mixing in the D0 − D̄0 system has only recently been observed by
the BaBar [36] and CDF [37] collaborations. This is a very small effect, and its
observation relies on the highly accurate flavour tagging of the initial state which is
achievable from knowledge of the D0 meson production process. Current investigations
focus on a search for New Physics in this system rather than a constraint of Standard
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Figure 1.8: Weak mixing box diagrams in the neutral B meson system.

Model CKM parameters. CP violation in the neutral D system is predicted to be
negligibly small in the Standard Model [38], so a significant observed rate would be a
strong signal of New Physics. The main decay modes used in the present searches are
D → K+K− and D → K±π∓. There is so far no evidence for indirect CP violation in
this system, with the combined measurement [39] (assuming no direct CP violation) of

1−
∣∣∣∣
q

p

∣∣∣∣ = +0.06± 0.14 (1.45)

Neutral B meson mixing

Observation of CP violation in the neutral B meson system came later than in
the Kaon system, because the more massive particles take a higher energy collider to
produce. There is also the challenge in that the lifetime difference between the weak
eigenstates of the B0−B̄0 system is almost negligible. However, this system has already
produced some very significant results to constrain the CKM parameters, and shows
evidence of much larger CP violation than the neutral kaon system.

Mixing in B0 and Bs mesons occurs through W boson exchange, shown in the weak
mixing box diagrams in Figure 1.8.

For B0 mesons (|bd̄〉, |b̄d〉), predictions from studies of CP violation in semileptonic
B decays can be used to estimate the level of CP violation in B0− B̄0 mixing through
the CP asymmetry in the semileptonic decay rates, ASL:

ASL = −
∣∣∣∣
Γ12

M12

∣∣∣∣ sin(φM − φΓ). (1.46)
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From current measurements [31]

ASL = (−0.4± 5.6)× 10−3. (1.47)

The measure of CP violation in meson mixing, |q/p, was described in section 1.4, and
can be related to ASL by

∣∣∣∣
q

p

∣∣∣∣ ≈ 1− ASL

2
= 1.0002± 0.0028. (1.48)

This sub-percentage effect is treated as negligible in B0 mixing measurements.

The first measurements of mixing in the B0 system were time integrated analyses,
first published in 1987 by UA1 [40], and relied on counting same-sign and opposite-
sign lepton pairs from semileptonic decays of produced bb̄ pairs. Increased sensitivity
could be obtained in time dependent measurements, directly observing the oscillation
frequencies, and many high energy collider and B factory experiments have produced
such results. The combined result of these measurements of the mixing frequency in
the B0 system is [41]

∆md = 0.507± 0.003 (stat.) ± 0.003 (syst.)ps−1 (1.49)

The Bs system is more difficult for mixing measurements. The mixing frequency,∆ms

is significantly higher than ∆md, and the decay width difference, ∆Γs is non-negligible,
whereas in the B0 system it can be treated as ∆Γd ≈ 0. The first significant (5σ)
observation of mixing in the Bs system was by CDF in 2006 [42], and this remains the
world’s best measurement to date:

∆ms = 17.77± 0.1 (stat.) ± 0.07 (syst.)ps−1 (1.50)

∆ms is an important parameter in the CP violation measurement described in this
thesis, and this precision measurement is a direct input to the likelihood fit.

The CP asymmetry measured in semileptonic Bs decays is [43]

As
SL = −0.003± 0.0101 ⇒

∣∣∣∣
q

p

∣∣∣∣
s

= 1.0015± 0.0051. (1.51)

which gives weight to the assumption from the SM prediction that CP violation in
mixing in the Bs system is minimal.

1.5 Phenomenology of B0
s → J/ψ φ decays

This section introduces the phenomenology of the B0
s → J/ψ φ decay and the ex-

perimental method used to measure the CP violating parameter β
J/ψφ
s in this channel.

Firstly, the generalised case of time development of a neutral meson system will be
adjusted for the specific case of B0

s decays. Next, the concept of flavour tagging is
introduced in Section 1.5.1, which is essential for separating the decays of B0

s and
B̄0
s mesons. The final state in the B0

s → J/ψ φ channel is an admixture of CP odd
and even states, which must be separated in order to study the effect of CP violation.
The method used to do this is described in Section 1.5.2.
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The effective Hamiltonian describing neutral meson time development was intro-
duced in Equation 1.28. Here, the elements M12 and Γ12 are of interest. Experimental
evidence summarised in section 1.4.1 showed that ∆Γs À ∆ms, which implies that
|Γ12| ¿ |M12|. Using this relation, it is possible to write |q/p|,∆ms and ∆Γs in terms
of Γ12 and M12:

∆ms = 2|M12|, ∆Γs = 2|Γ12|cosφs (1.52)

and from Equation 1.32, with the above approximation

q

p
= − M∗

12

|M12| = −VtsV
∗
tb

V ∗
tsVtb

(1.53)

where

φs = φM − φΓ = arg

(
−M12

Γ12

)
(1.54)

and higher order terms in Γ12/M12 are ignored. In the Standard Model, φs is predicted
to be very small [44]:

φSMs = 0.0041± 0.0008 (1.55)

CP violation in this channel arises due to interference between decays with and
without net mixing to the common final state (as defined in Section 1.4). The convention

independent measure of this type of CP violation is given in Equation 1.41 as λi = q
p
Āi
Ai

.

The λi quantities for a set of final states {i} in the Standard Model can be written in
terms of CKM matrix elements, in some cases with the addition of strong phases. The
quantity |q/p| was defined in this way in Equation 1.53, and similarly, from the fact
that quark relative weak interaction strengths are defined by the CKM elements, the
ratio of decay amplitudes can be written as

Āf
Af

= −ηCP V
∗
csVcb
VcsV ∗

cb

. (1.56)

Combining equations 1.53 and 1.56 gives the SM prediction for λi

λi = ηCPi λ = ηCPi
VtsV

∗
tb

V ∗
tsVtb

V ∗
csVcb
VcsVcb

= ηCPi ei2βs (1.57)

where ηCPi = ±1, with the positive case for CP even eigenstates and negative for CP
odd states. The phase βs is the small angle of the CKM unitarity triangle for the B0

s

system described in Section 1.2.2, and is predicted in the Standard Model to be

2βs ≡ 2 arg

(
−VtsV

∗
tb

VcsV ∗
cb

)
= 0.037± 0.002 (1.58)

These definitions can be related to the description of the parameters of the effective
Hamiltonian in terms of the phase φ earlier in this section. Both φs and βs are predicted
to be small in the Standard Model. If there is New Physics (NP) present in mixing, it
will contribute to both phases, and they can be written as combinations of the SM and
NP contributions according to the chosen phase conventions

φs = φSMs + φNPs , and 2βs = 2βSM
s − φNP

s . (1.59)
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With current experimental resolution and statistics, the SM contributions to both of
these phases can be treated as negligibly small, and the NP phase would be expected
to dominate. In this case, the measured phases can be related as

2βs ≈ −φs. (1.60)

An enhancement due to NP could come from additional massive particles such as extra
generations of quarks [20] entering the B mixing box diagrams (Figure 1.8).

1.5.1 Flavour tagging principles

Knowledge of the B meson flavour at production, is a key component of this analysis
or any involving CP -violation in neutral B systems. The process used in distinguishing
between initial B0

s and B̄0
s is called flavour tagging. Properties of the pp̄ → bb̄

production process, and b quark hadronisation and fragmentation are used in two flavour
tagging algorithms, Same Side and Opposite Side Taggers (SST, OST). Figure 1.9
illustrates the kinematics exploited by the two tagger types in the production and
decay of a bb̄ pair.

Figure 1.9: Production and decay of a bb̄ pair, showing the components of an event used for
Same Side and Opposite Side flavour tagging. The Same Side part refers to the decay of the
candidate B meson, the Opposite Side consists of the decay of a B meson containing the pair
produced partner of the b (b̄) quark in the candidate B meson.

The SST uses the fragmentation tracks of the B meson of interest (the candidate
B meson) to determine its flavour. In the case of a candidate B0

s meson, this means
identifying the flavour (q or q̄) of the s quark in a kaon produced alongside the B0

s (B̄0
s ).

As this is the pair produced partner of the s (s̄) in the candidate B meson, its flavour
tags the B meson as containing the opposite s̄ (s) quark at production and thus identifies
the B meson flavour when it was produced. For charged kaons, the quark content is
readily identifiable. The OST takes advantage of the pair production of b quarks and
uses information from the hadronisation and decay of the other b quark from the pair
(the opposite side B). If the opposite side B meson decays to charged leptons, the
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charge of its b quark can be identified, which tags the flavour of the candidate B meson
at production because it is known to contain the opposite b or b̄. For example, an
opposite side B decaying to a negative lepton implies that the candidate B contained a
b̄ at the time of production. Similarly, in hadronic decays of the opposite side B meson,
the charge of a b jet identified as coming from this decay can tag the quark content of
the decaying meson, from which the flavour of the candidate B can be inferred.

The algorithms used for B flavour tagging in this analysis are described in Chapter 3.
The use of flavour tagging to determine the flavour of a B0

s orB̄0
s meson at production

means that decays of the particle and antiparticle states can be followed separately.
This will be utilised in the development of the equations in the following subsections.

1.5.2 Angular analysis of B0
s → J/ψ φ

Eigenvectors of H were defined for a generic neutral meson in Equation 1.29, for
the B0

s system, the mass eigenstates are:

|BH
s 〉 = p|B0

s 〉 − q|B0
s 〉 and |BL

s 〉 = p|B0
s 〉+ q|B0

s 〉 (1.61)

With negligible direct CP violation, such is the case for the B0
s → J/ψ φ channel, these

can be treated as CP eiegnstates. The heavy, long-lived mass eigenstate, |BH
s 〉 is CP

odd, following the arguement set out for the Kaon system in Section 1.4.1, and the
light, short lived state, |BL

s 〉 is CP even.

The decay B0
s → J/ψ φ is a pseudo-scalar (Bs) decaying to a two vector final state

(J/ψ, φ). The Bs has spin 0, the vector particles each have spin 1 and are both C
odd. This means that the CP of the final state can be determined from only the P of
this state. Conservation of momentum for this system leads to three possible relative
angular momentum values, L = 0, 1 or 2, in order for the vector particles to respect
conservation of total angular momentum, J ≡ S + L.

There is a corresponding decay amplitude for each relative angular momentum value.
Mathematically, it is more straight forward to work with polarisation states of the vector
particles, so the transversity basis is used. This allows separation of CP odd and even
components of the decay by using angular distributions of their decay products. There
are three potential polarisation states of the final state vector particles,

• |P0〉 : spins are polarised longitudinally with respect to their momentum and
parallel to each other, CP even

• |P⊥〉 : spins are polarised transversely with respect to their momentum and per-
pendicular to each other, CP odd

• |P‖〉 : spins are polarised transversely with respect to their momentum and parallel
to each other, CP even

The CP odd and even Bs states described earlier in this section decay to the respec-
tive CP states listed. The CP odd state corresponds to the L = 1 angular momentum
state, the L = 0, 2 states are linear combinations of |P0〉 and |P‖〉.

The transversity basis is defined in terms of angles in the rest frames of the final
state particles, as shown in Figure 1.10. The x−axis is determined by the direction
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of the φ meson in the J/ψ rest frame, the K+K− plane defines the xy plane, where
py(K

+) > 0. The three angles are defined as:

• θ is the angle between p(µ+) and the xy plane, in the J/ψ meson rest frame

• φ is the angle between the x− axis and pxy(µ
+), the projection of the µ+ momen-

tum in the xy plane, in the J/ψ meson rest frame

• ψ is the angle between p(K+) and −p(J/ψ) in the φ meson rest frame

The predicted angular distributions of the CP odd and even final states are fully
developed in [45]. Here it suffices to define the unit vector in the direction of the positive
lepton in the J/ψ rest frame

n̂ = (sinθcosφ, sinθsinφ, cosθ) (1.62)

and the amplitudes to decay into each of the described CP states. The decay amplitudes
are Ai and Āi, the amplitudes to the final states i = {‖,⊥, 0}

Ai = 〈Bs|H|Pi〉, Āi = 〈B̄s|H|Pi〉 (1.63)

which are normalised such that |A0|2 + |A‖|2 + |A⊥|2 = 1. The complex vector A is
defined as

A =

(
A0cosψ,−A‖sinψ√

2
, i
A⊥sinψ√

2

)
. (1.64)

The probability density governing the angular distributions is defined in terms of Equa-
tions 1.64 and 1.62

P (θ, φ, ψ) =
9

16π
|A× n̂|2 (1.65)

Figure 1.10: The transversity basis: defined in terms of the angles θ and φ in the j/ψ rest
frame (left) and ψ in the φ meson rest frame (right).
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which is normalised such that
∫∫∫

9

16π
|A× n̂|2sinθdθsinψdψ = 1. (1.66)

Time development of B0
s and B̄0

s decay rates to a single CP

eigenstate

Combining equations 1.35 and 1.35, and re-writing in terms of B0
s mesons, gives

|B0
s (t)〉 = e−imte−Γt/2

[
E+(t)|B0

s 〉+
q

p
E−(t)|B̄0

s 〉
]
,

|B̄0
s (t)〉 = e−imte−Γt/2

[
p

q
E−(t)|B0

s 〉+ E+(t)|B̄0
s 〉

]
(1.67)

where E± are defined as

E± =
1

2

[
e+(∆Γ

4
+i∆m

2
)t ± e−(∆Γ

4
+i∆m

2
)t
]
. (1.68)

To study the time development of the B0
s → J/ψ φ decay, first a simplified case of

decay to a single final state, a CP eigenstate, will be considered. Again, following the
steps laid out in Section 1.4, the time dependent decay to the common final state |f〉
can be written as

〈f |B0
s (t)〉 = e−imte−Γt/2

[
E+(t)|B0

s 〉+
q

p

Ā

A
E−(t)|B̄0

s 〉
]
A

〈f |B̄0
s (t)〉 = e−imte−Γt/2

[
p

q

A

Ā
E−(t)|B0

s 〉+ E+(t)|B̄0
s 〉

]
Ā. (1.69)

Substituting Equation 1.41 into these definitions gives

〈f |B0
s (t)〉 = e−imte−Γt/2

[
E+(t)|B0

s 〉+ λE−(t)|B̄0
s 〉

]
A

〈f |B̄0
s (t)〉 = e−imte−Γt/2

[
λ−1E−(t)|B0

s 〉+ E+(t)|B̄0
s 〉

]
Ā. (1.70)

These can be converted into time-dependent decay rates for the B0
s and B̄0

s mesons

R = 〈f |B0
s (t)〉2 = e−Γt

{
cosh

∆Γ

2
t−<

{
λ∗

(
sinh

∆Γ

2
t+ isin∆mt

)}}
,

R̄ = 〈f |B̄0
s (t)〉2 = e−Γt

{
cosh

∆Γ

2
t−<

{
λ

(
sinh

∆Γ

2
t+ isin∆mt

)}}
, (1.71)

It is necessary to normalise these rates, when considering a probability distribution as
will be done in the maximum likelihood developed in Chapter 4. The normalisation
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can be calculated for the sum of the rates in Equation 1.71, and can be written as

∫
(R + R̄)dt = Γ−1

H + Γ−1
L + <(λ)

(
Γ−1
L − Γ−1

H

)

= τH + τL + <(λ)(τL − τH). (1.72)

This normalisation factor can be applied to the rates in Equation 1.71 to give

R =
e−Γt

τH + τL + <(λ)(τL − τH)

{
cosh

∆Γ

2
t−<

{
λ∗

(
sinh

∆Γ

2
t+ isin∆mt

)}}
,

R̄ =
e−Γt

τH + τL + <(λ)(τL − τH)

{
cosh

∆Γ

2
t−<

{
λ

(
sinh

∆Γ

2
t+ isin∆mt

)}}
,

(1.73)

From the expressions for the decay rates, the CP asymmetry can be written

ACP (t) =
(R̄−R)

(R̄ +R)
=

=(λ)sin∆mt

cosh∆Γt
2
−<(λ)sinh∆Γt

2

(1.74)

and the averaged rate (applicable in the case of no flavour tagging, for example) is

R̄ +R =
e−Γt

τH + τL + <(λ)(τL − τH)

{
cosh

∆Γ

2
t−<(λ)sinh

∆Γ

2
t

}
. (1.75)

By adding flavour tagging information (introduced in Section 1.5.1) the decay rates of
the B0

s and B̄0
s mesons can be written separately as

R̄ =
e−Γt

τH + τL + <(λ)(τL − τH)

{
cosh

∆Γ

2
t−<(λ)sinh

∆Γ

2
t

} (
1 +

=(λ)sin∆mt

cosh∆Γt
2
−<(λ)sinh∆Γt

2

)

R =
e−Γt

τH + τL + <(λ)(τL − τH)

{
cosh

∆Γ

2
t−<(λ)sinh

∆Γ

2
t

} (
1− =(λ)sin∆mt

cosh∆Γt
2
−<(λ)sinh∆Γt

2

)

(1.76)

As the CP asymmetry in this system is predicted to be very small, an approximation
can be made using the fact that λ is almost real. Defining the components =(λ) ≈ δ
and <(λ) ≈ ±(1− δ2/2), where the plus (minus) sign is for CP even (odd) final states,
the rates can be approximated to first order in δ as:

R̄ =
e−ΓL(H)t

2τL(H)

+
e−Γt

2τL(H)

δsin∆mt,

R =
e−ΓL(H)t

2τL(H)

− e−Γt

2τL(H)

δsin∆mt, (1.77)

for CP even (odd) final states.

Separating the definition of λ from Equation 1.57 into its real and imaginary com-
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ponents, Equation 1.76 can be written as

R̄E,O =
e−Γt

τH + τL ∓ cos 2βs(τL − τH)

{
cosh

∆Γ
2
t∓ cos 2βssinh

∆Γ
2
t

} (
1± sin 2βssin∆mt

cosh∆Γt
2 ∓ cos 2βssinh∆Γt

2

)

RE,O =
e−Γt

τH + τL ∓ cos 2βs(τL − τH)

{
cosh

∆Γ
2
t∓ cos 2βssinh

∆Γ
2
t

} (
1∓ sin 2βssin∆mt

cosh∆Γt
2 ∓ cos 2βssinh∆Γt

2

)

(1.78)

where the upper sign applies to CP even final states (E) and the lower to CP odd (O).

Recalling that δ is the imaginary part of λ above, 1.77 can also be re-written in
terms of βs:

R̄ =
e−ΓL(H)t

2τL(H)

+
e−Γt

2τL(H)

sin(2βs)sin(∆mt),

R =
e−ΓL(H)t

2τL(H)

− e−Γt

2τL(H)

sin(2βs)sin(∆mt), (1.79)

Time development of angular amplitudes in the case of multiple
CP final states

Analogous to the decay rates which have been developed here, the time dependence
of the angular amplitudes for the admixture of CP odd and even final states is of the
form of Equation 1.71, with the normalisation from Equation 1.72 applied. The time
dependent amplitudes to the i = {‖,⊥, 0} states are

Ai =
e−imte−Γt/2√

τH + τL ± cos 2βs(τL − τH)

[
E+(t)± e2iβsE−(t)

]Ai(0)

Āi =
e−imte−Γt/2√

τH + τL ± cos 2βs(τL − τH)

[±E+(t) + e2iβsE−(t)
]Ai(0) (1.80)

where the upper sign applies to CP even and the lower to CP odd states, and the λ
terms of 1.71 have been written in terms of βs. The probability in Equation 1.65 can
now be written time-dependently as

PB(θ, φ, ψ, t) =
9

16π
|A(t)× n̂|2

PB̄(θ, φ, ψ, t) =
9

16π
|Ā(t)× n̂|2 (1.81)

where the complex vector A(t) is the time dependent equivalent of Equation 1.64. The
normalisation is analogous to Equation 1.66

∫∫∫∫ ∑

j=B,B̄

Pj(θ, φ, ψ, t)sinθdθsinψdψ = 1. (1.82)

With these equations defined, it is possible to build a function to fit the decays of
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B0
s → J/ψ φ with arguments which are the observables of the transversity angles, time,

flavour tagging information and the mixing and CP violation parameters βs, Γ,∆Γ
and the angular amplitudes. However, in order to take into account the resolution and
smearing effects of the detector, it is mathematically easier to expand the probabilities
in terms of separate decay rates so that each can be separately convoluted with analytic
resolution functions, which will be discussed in Chapter 4. This means separating the
time development of the three Ais. Conveniently, the time development of the two CP
even amplitudes, A0(t) and A‖(t) is identical, so they can be treated simultaneously.
The time dependent vector A can be decomposed as

A(t) = A+(t) + A−(t), (1.83)

where the CP even component is

A+(t) = A+f+(t) =

(
A0 cosψ,−A‖ sinψ√

2
, 0

)
· f+(t), (1.84)

and the CP odd component is

A−(t) = A−f−(t) =

(
0, 0, i

A⊥√
2

)
· f−(t). (1.85)

The probabilities in Equation 1.81 can then be re-written in terms of the separate decay
components

PB(θ, φ, ψ, t) =
9

16π
{|A+(t)× n̂|2 + |A−(t)× n̂|2

+2<((A+(t)× n̂) · (A∗
−(t)× n̂))}

=
9

16π
{|A+ × n̂|2|f+(t)|2 + |A− × n̂|2|f−(t)|2

+2<((A+ × n̂) · (A∗
− × n̂) · f+(t) · f ∗−(t))}

PB̄(θ, φ, ψ, t) =
9

16π
{|Ā+(t)× n̂|2 + |Ā−(t)× n̂|2

+2<((Ā+(t)× n̂) · (Ā∗
−(t)× n̂))}

=
9

16π
{|A+ × n̂|2|f̄+(t)|2 + |A− × n̂|2|f̄−(t)|2

+2<((A+ × n̂) · (A∗
− × n̂) · f̄+(t) · f̄ ∗−(t))}. (1.86)

The CP even and odd decay rates to a single CP eigenstate were calculated in Equa-
tion 1.78, so rearranging these and discarding higher order terms in δ gives |f+(t)|2 and
|f−(t)|2, which are written here in terms of the observables ΓL and ΓH instead of the
difference ∆Γ
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|f̄±|2 =
1

2

(1± cos 2βs)e
−ΓLt + (1∓ cos 2βs)e

−ΓH t ± 2 sin 2βse
Γt sin ∆mt

τL(1± cos 2βs) + τH(1∓ cos 2βs)
,

|f±|2 =
1

2

(1± cos 2βs)e
−ΓLt + (1∓ cos 2βs)e

−ΓH t ∓ 2 sin 2βse
Γt sin ∆mt

τL(1± cos 2βs) + τH(1∓ cos 2βs)
. (1.87)

The interference terms for B0
s and B̄0

s are

f̄+(t)f̄ ∗−(t) =
−e−Γt cos ∆mt− i cos 2βse

−Γt sin ∆mt+ i sin 2βs(e
−ΓLt − e−ΓH t)/2√

[(τL − τH) sin 2βs]2 + 4τLτH
,

f+(t)f ∗−(t) =
−e−Γt cos ∆mt+ i cos 2βse

−Γt sin ∆mt+ i sin 2βs(e
−ΓLt − e−ΓH t)/2√

[(τL − τH) sin 2βs]2 + 4τLτH
.

(1.88)

Now that the decay terms for the different components are separated, these can be more
easily included in a likelihood fitting function with smeared exponentials replacing the
exponentials, and smeared sine exponentials replacing the sine exponentials, to incor-
porate the detector resolution effects. The full development of the likelihood function
is discussed in Chapter 4, and includes a re-working of the normalisation to account for
the angle dependent efficiency of the detector.

1.5.3 B0
s → J/ψK+K− in B0

s → J/ψ φ signal sample

A significant addition to this analysis over earlier investigations in theB0
s → J/ψ φ chan-

nel is the consideration of a potential S-wave contamination of the signal φ meson
(P−wave state) in B0

s → J/ψ φ. It has been suggested [46] that a 5-10% contamination
from an S-wave KK final state due to B0

s → J/ψK+K− (non-resonant) or B0
s → J/ψf0

could be present in the in the B0
s → J/ψ φ signal. The effect of this potential level

of contamination is predicted in [47], with the conclusion that a 5-15% S-wave KK

contamination could bias the measurement of β
J/ψφ
s significantly towards zero, thus

favoring the Standard Model value. In order to include the S-wave KK component in
the likelihood fit, it is necessary to combine the B0

s → J/ψKK(f0) amplitude with the
equations developed in the previous section for the φ meson P -wave state, and calculate
a normalisation factor for the full decay rate.

The decay to the final state including the KK S-wave follows the time dependence
of the CP odd component of the B0

s → J/ψ φ decay, |f−(t)|, because the combined
J/ψK+K− or Jψf0 state is a CP odd eigenstate. Contributions from non-resonant KK
and f0 are treated simultaneously, as they would be indistinguishable in the current data
sample size and over the mass range considered. The f0 component which lies under
the signal φ peak is the upper tail of the broad f0 resonance, which is treated as a flat
distribution within the narrow φ mass window defined in the data selection process for
this analysis (Chapter 3). From this point onwards, both the B0

s → J/ψK+K− and
B0
s → J/ψf0 will be written as B0

s → J/ψKK.

First, a probability density for the pure B0
s → J/ψKK process is calculated, anal-
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ogous to Equation 1.81 for the B0
s → J/ψ φ decay

QB(θ, φ, ψ, t) =
3

16π
|B(t)× n̂|2

QB̄(θ, φ, ψ, t) =
3

16π
|B̄(t)× n̂|2, (1.89)

where (c.f. Equation 1.84, 1.85)

B(t) = (B(t), 0, 0)

B̄(t)(t) = (B̄(t), 0, 0) (1.90)

and the time dependent amplitudes for B0
s and B̄0

s to the CP odd final state are

B(t) =
e−Γt/2

√
τH + τL + cos 2βs (τL − τH)

[
E+(t)− e2iβsE−(t)

]
,

B̄(t) =
e−Γt/2

√
τH + τL + cos 2βs (τL − τH)

[−E+(t) + e−2iβsE−(t)
]
. (1.91)

To combine the probability amplitudes for the J/ψKK and J/ψφ final states, it is
necessary to sum and square equations 1.89 and 1.81. It is also essential to account for
the relative phases and mass shapes of the two components. The φ meson mass shape
is described here by a non-relativistic (mass dependent) Breit Wigner distribution, and
the S-wave is treated as a flat (non-resonant) mass distribution, as discussed earlier.
Only the relative phase between the two components can be measured, and the S-wave
can take any phase with respect to the P -wave part.

Defining the parameters: Fsw as the fraction of J/ψKK; µφ as the φ mass (1019
MeV/c2); Γφ as the φ width (4.26 MeV/c2) [10], and δs as the relative phase of the
J/ψKK component, the normalised probability for the combination of the final states
can be written as

ρB(θ, φ, ψ, t, µ) =
9

16π

∣∣∣∣
[√

1− Fswh(µ)A(t) + eiδs
√
Fsw

g(µ)√
3

B(t)

]
× n̂

∣∣∣∣
2

ρB̄(θ, φ, ψ, t, µ) =
9

16π

∣∣∣∣
[√

1− Fswh(µ)Ā(t) + eiδs
√
Fsw

g(µ)√
3

B̄(t)

]
× n̂

∣∣∣∣
2

,(1.92)

when the reconstructed φ mass µ lies within a window µlo < µ < µhi. In Equation 1.92,
the φ meson mass propagator, h(µ), is of the relativistic Breit Wigner form:

h(µ) =

√
Γφ/2

∆ω
· 1

µ− µφ + iΓφ/2
, (1.93)

where

ωhi = tan−1 2(µhi − µφ)

Γφ
ωlo = tan−1 2(µlo − µφ)

Γφ
. ∆ω = ωhi − ωlo (1.94)
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The S-wave KK state’s flat mass distribution is given by g(µ):

g(µ) =
1√
∆µ

, (1.95)

where the KK invariant mass window is

∆µ = µhi − µlo (1.96)

In order to simplify the expansion of Equation 1.92, the mass dependent function
F(µ) can be defined

F(µ) ≡
√
Fsw(1− Fsw)Γφ

2∆µ∆ω
· eiδs

µ− µφ − iΓφ/2
(1.97)

In this analysis, for the final fit function the KK mass will be integrated over, so the
quantity of interest in this case is the integral of F(µ)

Iµ ≡
∫
F(µ)dµ =

√
Fsw(1− Fsw)Γφ

2∆µ∆ω
· eiδs · log

µhi − µφ − iΓ/2

µlo − µφ − iΓ/2
. (1.98)

Following the procedure as for theB0
s → J/ψ φ decay, the time dependent equivalent

of 1.89, the CP odd final state which incorporates the S-wave KK, is defined as

QB(θ, ψ, φ, t) =
3

16π
|B(t)× n̂|2

=
3

16π
|B× n̂|2|f−(t)|2. (1.99)

for the B0
s initial state and

QB̄(θ, ψ, φ, t) =
3

16π
|B̄+(t)× n̂|2

=
3

16π
|B+ × n̂|2|f̄−(t)|2. (1.100)

for the B̄0
s initial state.

Now, the combined time dependence can be expanded, integrating over the φ meson
mass and using the identity defined in Equation 1.98, as

ρB(θ, ψ, φ, t, Fsw, δsw) = (1− Fsw) · PB(θ, ψ, φ, t) + FswQB(θ, ψ, φ, t)

+ 2

√
27

16π
<[Iµ((B× n̂) · (A− × n̂) · |f−(t)|2

+ (B× n̂) · (A+ × n̂) · f+(t) · f ∗−(t))] (1.101)
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ρB̄(θ, ψ, φ, t, Fsw, δsw) = (1− Fsw) · PB̄(θ, ψ, φ, t) + FswQB̄(θ, ψ, φ, t)

+ 2

√
27

16π
<[Iµ((B× n̂) · (A− × n̂) · |f̄−(t)|2

+ (B× n̂) · (A+ × n̂) · f̄+(t) · f̄ ∗−(t))]. (1.102)

The equations necessary to construct a likelihood fit function with the aim of mea-
suring the CP violating parameter βs in the channel B0

s → J/ψ φ (written from this

point as β
J/ψφ
s ) have been defined in this section. These will be developed in the con-

text of the experimental method, to include detector effects, and combined into a full
maximum log likelihood fit in Chapter 4.

There exist several symmetries under transformations of the equations describing
the B0

s → J/ψ φ decay, which will also be defined along with a discussion of their
implications in Chapter 4. These can be reduced by adding flavour tagging information
to follow the time dependence of an initial B0

s or B̄0
s state separately, and by the

inclusion of the additional S-wave Bs → J/ψK+K− or Bs → J/ψ contamination, but
with the currently available statistics it is not possible to determine between two values
of β

J/ψφ
s which are equivalent under the symmetry described in Section 4.6, preventing

the possibility of measuring an exact point value of β
J/ψφ
s at this stage.

1.6 Review of current experimental status

The analysis documented in this thesis uses the largest sample of B0
s → J/ψ φ de-

cays available to date, as well as improvements to the analysis method over previous
studies, which are described in Chapter 4. Both the CDF and DØ collaborations have
published measurements of the parameters of interest in B0

s → J/ψ φ decays, using
datasets of about 25% of the size of the sample described in this thesis. Addition-
ally, these collaborations have produced more recent preliminary updates which have
been combined to make the most of the statistics available from the Tevatron collider
experiments. So far these are the only two experiments to analyse this decay chan-
nel, although the B factories, BaBar and Belle have published measurements for the
B0 system in the kinematically similar B0 → J/ψK∗0 channel [48], [49].

Using a data sample of around 2500 B0
s → J/ψ φ signal events, CDF found [50]:

cτs = 456± 13 (stat.)± 7 (syst.) µm

∆Γ = 0.076+0.059
−0.063 (stat.)± 0.006 (syst.) ps−1

|A‖(0)|2 = 0.230± 0.021 (stat)± 0.007 (syst.)

|A0(0)|2 = 0.530± 0.027 (stat)± 0.009 (syst.)

with the assumption of no CP violation (β
J/ψφ
s =0.0) and no flavour tagging used in

the fit. From this analysis, with β
J/ψφ
s floating, there was not sufficient sensitivity to

exclude any range of values for β
J/ψφ
s at the 68% confidence level.

The CDF analysis published in 2008 [4] using around 2000 B0
s → J/ψ φ signal

events included flavour tagging of the initial B0
s meson state. This found β

J/ψφ
s to lie
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within [0.16,1.41] at the 68% confidence level.

For comparison, the DØ collaboration published a measurement in 2007 [5] using
a non-flavour tagged analysis with the hypothesis of no CP violation, with 1040 signal
B0
s → J/ψ φ events giving

cτs = 456± 24 (stat.)+3
−9 (syst.) µm

∆Γ = 0.12+0.08
−0.10 (stat.)± 0.02 (syst.) ps−1

In a separate paper [51], DØ present the angular amplitudes

|A‖(0)|2 = 0.244± 0.032 (stat)± 0.014 (syst.)

|A0(0)|2 = 0.555± 0.027 (stat)± 0.006 (syst.)

from a fit without flavour tagging, assuming β
J/ψφ
s =0.0.

The most recent updates prior to the measurement described in this thesis were
presented as preliminary results by the CDF and DØ in 2008 and 2009 [7] [52],
each with about 50% of the statistics of the current dataset. These analyses were
combined [6], finding β

J/ψφ
s in the range [0.27, 0.59]∪ [0.97, 1.30] at the 68% confidence

level, which gives a probability of 3.4%, or 2.1σ for the Standard Model expected values
of β

J/ψφ
s and ∆Γ. This hint at a deviation from the Standard Model expectation adds

further incentive to produce a more precise measurement of β
J/ψφ
s .
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Experimental apparatus

The data analysed and presented in this thesis were collected at the Collider Detector
Facility (CDF-II detector) from 2002-2009 of the ongoing Run-II data taking period
at Fermilab. This detector is at one of two collision points in the Tevatron accelera-
tor, which collides protons with antiprotons at 1.96 TeV centre of mass energy. This
chapter first describes the components of the Fermilab accelerator complex, and the
methods used to produce and accelerate protons and antiprotons, then gives details
of the CDF-II detector, with particular focus on those detector components used for
this and other B-physics analyses.

2.1 The Tevatron accelerator complex

The Tevatron is a super-conducting synchrotron, of 1 km radius, which was the
world’s highest energy particle accelerator until December 2009 when it was surpassed
by the energy of the Large Hadron Collider (LHC) at CERN. The current Tevatron
accelerator is an upgrade of the original, and is referred to as the Run-II Tevatron. Its
name derives from the term Tera electron Volt, as it accelerates protons and antiprotons
to 980 GeV (0.98 TeV) in standard running for Run-II.

The Tevatron is the final stage of acceleration for beams of protons and antiprotons
produced at the Fermilab accelerator complex. The full chain of accelerators is shown
in figure 2.1. In addition to providing colliding beams for the two detectors positioned
around the Tevatron, CDF and DØ [53], the complex can send high energy beams to
fixed target experiments and test beam facilities at Fermilab.

2.1.1 Proton production and acceleration

There are three components of the accelerator system which are collectively known
as the Proton Source: the Cockroft Walton (Pre-accelerator), Linear accelerator (Linac)
and Booster.

Cockroft Walton Pre-accelerator

The Pre-accelerator is the first stage of the acceleration chain, there are two electro-
static accelerators of the Cockroft Walton design [54] which provide negatively charged
hydrogen ions to the Linac. Only one of the two is used at any time. Each consists of
a H− ion source contained in an electrically charged dome. The H− ions are linearly
accelerated to 750 keV by the potential of the negatively charged dome, and then travel
through a transfer line to the Linac.

37
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Figure 2.1: The Fermilab accelerator chain

Linac

The Linear Accelerator (Linac) [55] accelerates the 750 keV H− ions to 400 MeV.
It consists of two sections, the first is made up of five Alvarez drift tubes which are
named for the Professor of Physics, Luis Alvarez, who designed the Linac at Berkley in
1947 on which the original Fermilab linac design was based. This section of the chain
accelerates the ion beam from the input 750 keV to 116 MeV. The second part is a set
of seven radio frequency (RF) cavity modules, which operate at 805 MHz and accelerate
the beam to 400 MeV.

Booster

At the booster stage, the 400 MeV H− ions are striped of their electrons, leaving
only the protons which are accelerated to 8 GeV. The Booster [56] is a synchrotron of
75 m radius, with 19 RF cavities interspersed with 96 bending and focusing magnets
about its ring. Before the Fermilab accelerator complex was built, most proton colliders
used protons directly injected from the linac into the main accelerator, however, a Linac
capable of producing 8 GeV protons required for the Tevatron would have had to be
about 6 km long, which was too expensive and impractical to be implemented. The
solution was to add a booster synchrotron, a circular accelerator which accelerates the
protons in bunches. The term bunch refers to the portion of a proton beam in a stable
phase space area of the RF accelerator, which can be captured and accelerated by the
application of RF. The beam is accelerated in cycles in the Booster, gaining energy
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each time it circulates, the full process of acceleration to 8 GeV takes approximately
33 ms, then the beam can be transferred to the Main Injector.

Main Injector

The Main Injector (MI) [57] is a second synchrotron accelerator, it has several modes
of operation, of which the ones of relevance to the high energy collisions will be discussed
here. The MI has 18 accelerating RF cavities, and increases the energy of beams to 120
GeV or 150 GeV according to the mode of use.

In antiproton (Pbar) production mode, the MI takes protons at 8 GeV energy from
the Booster, combines two Booster batches in a process called slip stacking and accel-
erates them to 120 GeV, before sending them to the Antiproton source which will be
described in the following section.

For injecting beams directly to the Tevatron, the energy reached is 150 GeV. For this
mode, the MI can take antiproton beams from the Antiproton source as well as protons
from the Booster. For injecting protons the MI takes seven bunches from the Booster
and combines them into a single bunch, by a process called coalescing. This is repeated
36 times to load the protons necessary for a standard store in the Tevatron. For the
antiprotons, the MI takes four antiproton bunches and accelerates them to 150 GeV,
repeating this four times to acquire the 36 bunches equivalent to the proton bunches
for collision in the Tevatron.

2.1.2 Antiproton production, storage and acceleration

Antiprotons are not abundant in any terrestrial source, so their production is a
challenge for any proton-antiproton collider [58]. At Fermilab they are produced in
collisions of protons with a fixed target and selected from the large range of collision
products. Storage and control of the antiprotons also requires sophisticated techniques,
which will be described in the following sections.

Target

The antiproton source is a nickel alloy fixed target, which is struck by high energy
protons from the MI. The product of these collisions is a spray of particles, a small
fraction of which are antiprotons. The antiprotons at 8 GeV are selected using a pulsed
dipole magnet to control the momentum and charge, and sent to the Debuncher.

Debuncher

The antiprotons directly from the antiproton source have a wide spread of momen-
tum and transverse phase space. For high energy collisions, it is advantageous to have
a focused, narrow beam, as will be discussed further in Section 2.1.3. For the proton
beams, this can be achieved by discarding the particles which are outside the required
phase space, because of the abundance of protons and their relative ease of production.
The antiprotons, however, are too valuable to be thrown away like this, so they have
to be treated using more efficient methods.

The first stage of controlling the antiproton momentum spread is carried out by RF
bunch rotation and adiabatic debunching. The Debuncher RF system takes bunches
from the target, which are short in time spread, and have a large momentum spread;
it rotates them in phase space resulting in bunches with small momentum spread and
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a larger time spread. By lowering the RF voltage, the beam is then adiabatically
debunched.

The beam is further reduced in momentum spread and transverse beam size by
stochastic cooling. In this context, cooling refers to narrowing the spread in phase
space of the beam. Stochastic cooling was pioneered by Simon van der Meer [59] in
the UA1 experiment at CERN in the early 1980s. This technique was essential in the
discovery of the W and Z bosons, for which van der Meer was awarded the Nobel Prize
in 1984, along with the physicist Carlo Rubbia [60]. The method relies on feedback from
pickup sensors at one point in the ring, to kicker electrodes at a further point. The
sensor detects the spread in the transverse or longitudinal motion of the antiprotons,
and sends this information to the kicker, a magnet which applies a force to correct it,
as demonstrated in Figure 2.2. Stochastic cooling is also used in the Accumulator stage
of the antiproton source, and in the Recycler.

Figure 2.2: The stochastic cooling method [61]

Accumulator

The second synchrotron of the antiproton source is the Accumulator, which is of
similar dimensions to the Debuncher. It is a storage ring for 8 GeV antiprotons, which
undergo further cooling there before being sent to the MI for acceleration.

Recycler

Another antiproton storage ring is the Recycler. It’s original purpose was to recycle
remaining antiprotons from a Tevatron store and re-cool them along with the new
antiprotons from the antiproton source [54]. However, problems with this use in early
in Run-II caused a decision to change the system so that it is now only used to store
and further cool antiprotons direct from the antiproton source.

In addition to stochastic cooling, as described for use in the debuncher, the recycler
uses Electron cooling. Stochastic cooling loses effectiveness at higher intensities, when
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there are more than 200 × 1010 antiprotons in the Recycler electron cooling is more
suitable. Electron cooling was developed by G.I. Budker at Novsibirsk [58]. It works on
the same principle as a heat exchanger, in that the “warm” (wide momentum spread)
beam of antiprotons travels parallel to a “cool” beam of electrons, and as the beams
interact, the energy of the warmer antiproton beam is transferred to the cooler electron
beam, thereby reducing the spread of the antiproton beam.

2.1.3 Tevatron collisions

The final stage in the Fermilab acceleration process is the Tevatron [62]. This
accelerator stands apart from the rest of the chain in several aspects; it is the largest
ring, the only cryogenically cooled accelerator and the only device capable of operating
in colliding beams mode. The Tevatron takes both protons and antiprotons from the
MI at 150 GeV and accelerates them to 980 GeV energy. The beams are collided at two
points along the circumference of the accelerator, corresponding to the two colliding
beam experiments at Fermilab, CDF and DØ.

The super-conducting magnets used by the Tevatron require cryogenic cooling to
maintain their super-conductivity, which allows very high currents to pass through them
in order to create a strong magnetic field. Liquid helium is used to keep the magnets at
around 4.6 K. There are three main uses of magnets in the Tevatron: bending, focusing
and correcting the beam. Dipole magnets are used to bend the beams into a circular
trajectory. These produce a radial force on particles which travel through the beam
pipe as it passes through the magnet. Focusing magnets are quadropoles, they focus
the beam by applying equal forces about the beam pipe, such that a particle in the
centre of the beam will feel no net force, but one which is out of alignment will be
pushed towards the centre by a force in the opposite direction to the one in which it is
off-centre, thus correcting any misalignments. Quadropoles are also used to focus the
beam to the collision (interaction) points.

Luminosity and energy

Two features in particular characterise a particle accelerator: its luminosity and
energy. The energy reached by the machine determines the type of physics which
can be investigated with it, by way of the range of the particle masses which can
be produced in the resulting collisions. The luminosity, however, determines the rate
of data acquisition. This affects the likelihood of observing rarely occurring events,
and the statistical uncertainties on measurements made with the detectors. This can
be understood by considering the definition of luminosity. The probability of a beam
particle colliding with another from the opposite beam is given by the interaction cross-
section, σint. The rate of these interactions in a detector is [62]

R = σintL (2.1)

where the luminosity, L is a measure of how likely the particles are to interact between
the two beams. It is given in the Tevatron by

L =
fnNpNp̄

A
=

fnNpNp̄

2π(σ2
p + σ2

p̄)
F

(
σl
β∗

)
(2.2)
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where f is the revolution frequency, n is the number of bunches per beam, Np,p̄ is the
number of particles per bunch and A is the cross sectional area of the beams. In the
right hand side of Equation 2.2, A is written in terms of the standard deviation of the

beams at the interaction point (σP,p̄) and a form factor, F
(
σl
β∗

)
which is defined by

the bunch length, σl and the interaction point beta function, β∗. From Equation 2.2 it
is clear that focusing the beams, as discussed in previous sections, increases the lumi-
nosity by reducing the denominator size. Increasing the luminosity increases the rate
of interactions, therefore making greater statistics available for the experiments. The
Tevatron Operations group have been consistently increasing the luminosity provided
to the experiments throughout the run period of the detector. Figure 2.3 shows the
rate of increase in peak luminosity week by week since the start of Run-II, where peak
luminosity is the highest luminosity point, occurring at the beginning of a store of pro-
tons and antiprotons injected into the Tevatron. Integrated luminosity is the measure
of total data delivered to the experiments, which is shown for Run-II in Figure 2.4.

Figure 2.3: Tevatron Run-II peak instantaneous luminosity [63]

Figure 2.4: Tevatron Run-II integrated luminosity [63]

2.2 The CDF detector

The CDF detector saw its first pp̄ collisions in 1985, since then it has been upgraded
to meet new physics goals and to keep up with the increases in Tevatron luminosity. The
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latest version of the detector, CDF-II, was completed in 2002. It is a general purpose
solenoidal detector with strengths in charged particle tracking, calorimetry and muon
detection. The design is symmetric both forward-backward, and azimuthally, and as a
multi-purpose detector it is optimised to extract the maximum information about the
properties of a wide range of particles produced in pp̄ collisions. A full description of
the various components which make up the CDF Run-II detector is given in [64].

Before introducing the sub-detectors of CDF, some terms used in the detector de-
scriptions will be defined.

Coordinate system definition

The three coordinate systems of the CDF detector [65] each have their origin at
the collision point in the centre of the detector. In Cartesian coordinates, the z-axis
is along the beam direction, with the positive direction following the motion of the
proton beam, the x-axis is in the horizontal plane pointing radially outwards from the
centre of the Tevatron ring, and the y-axis points vertically upwards from this. Due to
the cylindrical shape of the detector, it is practical to also use both polar (ρ, φ, θ) and
cylindrical (r, φ, z) coordinates. In these cases, the ρ and r coordinates define the radial
distance from the origin. The angle φ is the azimuthal angle, and the plane r−φ, is like
the x − y plane, transverse to the beamline, the polar angle, θ is defined with respect
to the x-axis.

In addition to the coordinates described, it is useful to define the angular variable
η, the pseudorapidity

η ≡ − ln tan

(
θ

2

)
(2.3)

which is equivalent in the ultrarelativistic, massless limit, to the rapidity of a particle

y ≡ 1

2
ln
E + pz
E − pz

. (2.4)

Overview of the CDF detector

A cut-away view of the CDF detector is shown in Figure 2.5. The beampipe lies at
the centre of the detector. The tracking system, consisting of a silicon microstrip detec-
tor surrounded by a multi-wire drift chamber, surrounds the beampipe. The trackers
have a cylindrical geometry about the beamline. Immediately outside of the tracking
is the Time of Flight (TOF) detector which is used to gain particle identification in-
formation. A super-conducting solenoid surrounds these inner systems, providing a 1.4
Tesla magnetic field longitudinal to the beamline. The calorimeters lie outside of the
solenoid, to absorb the energy of particles which interact with them. The muon detec-
tors form the outer layer of the CDF detector, because muons are minimally ionising
particles, which lose little energy in the inner parts of the detector and can therefore
be identified by reaching the outlying muon chambers.

The following sections give an overview of the functions of the detector and its
components.
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Figure 2.5: Elevation view of half of the CDF Run-II detector

2.2.1 Tracking detectors

Tracking refers to the measurement of the trajectories of charged particles traversing
the detector volume. This allows the measurement charge and momenta of particles and
the calculation of kinematical quantities. Through the process of ionisation, charged
particles leave deposits of charge and energy in the detector, which are called hits. The
pattern of these hits can be combined to reconstruct tracks of particles. In addition,
the tracks can then be put together to calculate the points in space (vertices) where a
particle has decayed to daughter particles.

The CDF Run-II tracking system is based on a similar design to the Run-I detec-
tor, which was operational 1987-1996. An upgrade was necessary to cope with the
higher luminosities expected in Run-II, and to improve the silicon tracking with newer
technology. The Run-I Central Tracking Chamber (CTC) has been replaced with the
Central Outer Tracker (COT), a small cell, higher luminosity capable drift chamber,
with significantly better stereo tracking than its predecessor. The second generation
silicon detector for Run-II has greatly improved coverage and tracking power.

The layout of the CDF Run-II tracking system is shown in Figure 2.6, and the
sub-components described in more detail in the following subsections.
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Figure 2.6: Layout of the CDF Run-II tracking system (side view)

Silicon trackers

A silicon strip detector, such as those used in CDF, is a reverse-biased p-n junction,
with the p or n side segmented into fine strips. When an ionising particle passes through
the detector, it leaves a trail of electron-hole pairs, which are separated by the electric
field. The purpose of the reverse biased voltage is to increase the gap between the
conduction and valance bands of the p-n junction, thereby reducing thermal currents.
By reading out the charge deposited on individual strips, a localised position for the hit
can be obtained. CDF uses both single and double sided silicon microstrip detectors.
Single sided detectors have strips for only one side of the junction, for double sided
detectors both sides are segmented. With double sided strip detectors, one side can be
segmented into strips at an off-set angle to the other. In the case of CDF, the p side
strips are parallel to the z axis, and the n side is segmented at a stereo angle to the
z direction. This means that in addition to getting a precision measurement in the φ
direction on the p side, z position information can be recorded on the n side.

The silicon tracking system consists of the Silicon Vertex Detector (SVX II), In-
termediate Silicon Layers (ISL) and the innermost part, Layer 00 (L00). These are
illustrated in Figure 2.7.

The SVX II [66] is the main component of the silicon system. It is made up of 3
barrels, each 29 cm in length, divided into 12 wedges in φ. Each wedge is constructed of
5 silicon sensor layers radially located 2.45-10.65 cm from the beam pipe. The sensors
are mounted in units called ladders, in groups of four, which are fixed to a bulkhead
containing cooling channels at the end of each barrel. This sub-detector uses double
sided silicon strip sensors, with three layers of 90◦ stereo sensors and two of small angle
stereo sensors, giving 3D vertex reconstruction capability and pattern matching with
the outer tracking systems. The resolution in r − φ for SVX II hits is 9µm.

Between the beam pipe and the SVX II detector lies the L00 silicon detector [67].
This single-sided, radiation hard microstrip detector is designed to withstand the high
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Figure 2.7: Cross section view of the CDF silicon detectors

radiation environmental conditions and extend the useful lifetime of the CDF silicon
system. The inner layers of the SVX will cease to be operational as radiation damage
occurs and the double sided sensors can no longer be depleted at the maximum bias
voltage, but L00 is built to take higher bias voltages, and therefore remain functional
as radiation damage occurs. It is positioned at 2 cm radially from the centre of the
beampipe, has full azimuthal coverage and extends to |z| < 47 cm.

The final silicon sub-detector is the ISL, which provides coverage between the SVX
II and the COT. It is divided into three layers, a central one at 23 cm radially, one
at 20 cm and one at 28 cm. The purpose of the central layer is to provide tracking in
conjunction with the COT, the other layers cover the region of 1.0 < |η| < 2.0 which
is not available to the COT. The ISL is a double layer microstrip detector with small
angle stereo sensors.

Central Outer Tracker

The sub-detector radially outside the ISL is the COT [68], a cylindrical open-cell
drift chamber, which spans the radial space 44-132 cm from the beamline. The COT is
mainly used for charged particle tracking in the central pseudo-rapidity region, |η| < 1,
it has full azimuthal coverage, and spans an axial range of 310 cm. The COT has
excellent tracking resolution: the hit resolution is 140 µm and the transverse momentum
(pT ) resolution is σpT/pT 0.15% · pT .

There are 30240 sense wires running end to end of the detector, half of which are
axial, and half are stereo with an angle of 2◦, giving an accurate r−φ measurement for
calculating transverse momentum, pT , but less precise information in the r − z plane.
The sense wires are arranged in 96 layers radially, which are grouped into 8 super layers,
as shown in Figure 2.8, numbered 1-8 from the centre. The super layers are divided into
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Figure 2.8: Layout of the COT super layers, showing 1/6 of the endplate, dimensions in cm.
Sense and field slot format is shown in enlargement. [68]

supercells, consisting of 12 sense wires, the layout of these is shown in Figure 2.9. The
number of supercells in a super layer scales with distance from the beampipe, i.e. the
cells are of constant size. In each supercell there is a wire plane which contains as well
as sense wires, potential wires which are used to shape the field. Both types of wires are
made of gold plated tungsten with 40 µm diameter, and each supercell is surrounded
by a 6.35 µm Mylar cathode with vapour deposited gold on each side, which is shared
between adjacent cells.

The COT is filled with a 50:50 mix of argon and ethane gases plus isopropyl alcohol.
Charged particles pass through the chamber ionise the gas leaving a trail of electrons,
which are attracted towards the sensor wires by the electric field between the potential
wires and the cathodes. In order to compensate for the Lorentz angle of electrons
drifting in the magnetic filed of the solenoid, each supercell is angled 35◦ with respect
to the radial direction.

In addition to tracking, the COT is used to measure charged particle ionisation en-
ergy loss. As drifting electrons get closer to the surface of the wires, they are accelerated
by the local electric field, which causes an avalanche due to secondary ionisation. The
effect of this is a signal on the sensor wire which is processed out by the attached read-
out electronics, an ASDQ (amplifier, shaper, discriminator, charge encoded) chip [69].
The width of the digital pulse encodes the amount of charge collected, which after cal-
ibration to remove any kinematic or environmental dependences, gives the ionisation
energy loss of a particle, dE/dx. This is an important parameter in particle identifica-
tion (PID) and will be discussed in more detail in Chapter 3. The leading edge of the
pulse gives timing information for a track.

The Tevatron has surpassed the Run-II luminosity expectations, and in 2007 it was
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Figure 2.9: Sketch of three supercells in super layer 2, looking along the Z direction

necessary to take the effect of the high luminosity regime on the COT sub-detector. In
order to minimise the radiation effects, and avoid overwhelming the readout electronics
(event selection and triggers to be discussed later in this section), the dE/dx readout
functionality of the inner two super layers of the COT was switched off. The dE/dx
measured from the COT before and after this change needed to be carefully studied
and recalibrated, the full details of which are detailed in Chapter 3.

2.2.2 Time of Flight

The use of the COT in particle identification has been introduced; the detector
component radially outside of the COT is the Time of Flight (TOF) system, which
exists to enhance PID of low momentum particles. The primary purpose of the TOF
detector is to identify charged kaons in order to improve B meson flavour tagging, it is
also used in certain applications in the CDF trigger system, such as cosmic ray, highly
ionizing particle and high multiplicity triggers. The triggers used in CDF are the first
level of event selection, and will be discussed in detail later in this section. The flight
time of a particle combined with its momentum can give an estimate of its mass, which
can be used to identify the particle type.

The TOF detector consists of a single barrel of 216 Bircon scintillator bars, 279 cm
long with a cross section of 4×4 cm, within the magnetic field of the solenoid. The bars
are arranged radially around the COT, and run parallel to the beampipe. The TOF
system lies 138 cm from the beampipe, which is approximately 5 ns flight time for the
fastest particle types, and covers the pseudorapidity region |η| < 1. Time of flight is
defined as the time of arrival at the TOF scintillator, minus the collision time, t0. Each
end of every bar is read out by a fine mesh photomultiplier tube (PMT), with a total
of 438 PMTs. When a particle passes through the scintillators, it leaves a deposit of
energy which causes a flash of light which is detected and amplified by the PMTs.
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The timing difference read out by PMTs at two ends of a scintillator bar indicates
the z position of the particle. As well as a timing measurement, the PMTs readout a
measurement of charge, which is used in triggering, as well as in calibrating the TOF.
The resolution is of order 100 ps, which gives a 2σ separation between charged, low pT
pions and kaons. The use of time of flight as a particle ID variable will be described
in Chapter 3. As a PID tool, TOF is complementary to dE/dx, as its strength lies
in separating low momentum particles, in the range p < 1.6 GeV/c, which is poorly
covered by dE/dx.

2.2.3 Solenoid

The tracking and time of flight detectors are immersed in a 1.4 Tesla magnet which
is generated by a superconducting solenoid. Charged particles moving in a magnetic
field travel in a helix, the curvature of which can determine the momentum of a particle
from its tracks, and the sign of the curvature gives the charge of the particle. The
solenoid coil is made from single layer aluminium stabilised monolithic NbTi/Cu, it
is supported by an aluminium cylinder which lies outside of the coil [70]. To achieve
superconductivity, the solenoid is cooled with liquid helium to around 4.7 K.

2.2.4 Calorimeters

The detector components outside of the solenoid are not used in tracking, therefore
do not need the magnetic field to bend charged particle trajectories. The next parts
of the detector, are the calorimeters which are used to measure the energy of particles
stopped by them, and separate electrons and photons from hadrons. Muons, which are
minimally ionising and therefore deposit only a small fraction of energy passing through
the calorimeter material, leave little trace in the calorimeters and pass through to the
muon detectors which are described in the next section. Calorimeters are particularly
important in identifying neutral particles, which do not leave tracks in the inner detec-
tors. They are also essential in deducing the likelihood of the presence of a neutrino
in an event, as neutrinos do not interact with the detector but can be observed by the
absence of energy that should be present due to energy-momentum conservation, called
missing energy.

CDF has two types of calorimeter: electromagnetic (EM) which mainly absorb
photon and electron energy through EM interactions and hadronic (HA) which absorb
energy from hadrons via the strong interaction. The central EM and HA calorimeters,
the CEM and CHA, surround the tracking system radially, and cover the pseudo-
rapidity range |η| < 1.1 [71]. Coverage in η is extended by the plug calorimeters,
PEM and PHA, to |η| < 3.6, and the region between the central and plug areas is
bridged by the WHA [72].

The calorimeters are made up of alternating layers, of a scintillator which absorbs
energy and emits light, and a passive metal which the incident particles interact with
and lose energy to. In the central calorimeter these are arranged in wedges consisting
of lead-scintillator layers for the EM section and a steel-scintillator hadron section. The
wedges are segmented into towers, each of which covers about 15◦ in φ and 0.11 in η.
The plug calorimeters are also segmented in towers, these vary in η − φ coverage. The
PEM, like the CEM, uses lead interspersed with the plastic scintillator layers, the PHA
consists of iron-scintillator layers and the WHA layers of steel and scintillator. Read
out is done via PMTs which amplify the signal from the absorbed particles.
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The EM calorimeters rely on Bremsstrahlung and photon absorption in the lead
absorber to create showers of particles; the energy of these showers is proportional to
the energy of the initial particle. Each lead layer absorbs a fraction of the shower,
creating a further cascade of EM interacting particles which deposit energy in the next
scintillator layer.

Particles are stopped in the hadron calorimeter by interactions with nuclei in the
iron layers. As the nuclear interaction cross section is significantly lower than the EM
cross section, the hadron calorimeters need much more material to stop particles which
travel through it. The main fraction of the calorimeter size consists of the hadron
sections, which lie outside the EM calorimeter sections.

The EM calorimeters are enhanced by showermax detectors, CES and PES, which
are gas filled wire and strip chambers. These give position measurements which can
be matched to tracks, and a transverse profile of the shower, to separate photons from
neutral pions. Additionally, preshower scintillator tile chambers (CPR and PPR) are
positioned on the front of the central calorimeter wedges and the first layer of the PEM.
These improve soft (low momentum) photon and electron identification.

2.2.5 Muon detectors

The furthest detector component from the beampipe is the muon system. It was ex-
plained in the previous section that as minimally ionising particles, muons pass through
the rest of the detector losing little energy, and if they have sufficient momentum they
reach the muon drift chambers. A particle entering the muon chambers leaves a track
which is registered as a muon stub. As they are charged, muons leave tracks in the
COT; if a COT track is matched to a muon stub these can be combined to make up a
muon candidate. The design of the detector is such that other types of particle than
muons should be absorbed by the material between the beam pipe and the first of the
muon detectors.

Muon identification is important for the analysis described in this thesis; the dimuon
(J/ψ) trigger is used to select J/ψ → µµ events, which make up half of the final state
particles of the Bs → J/ψφ decay. The CDF triggers will be explained in the final part
of this chapter.

The CDF muon system [73] consists of several subcomponents, the main part is
the Central Muon detector (CMU) which was the initial muon system of the Run I
detector. During Run I, the muon system was upgraded by adding the central muon
extension (CMX) and central muon upgrade (CMU) components. These components
were improved and finalised for Run II. An additional section, the Intermediate Muon
detector (IMU), extends the coverage in η to the forward region. The η − φ coverage
of the different muon detector components is shown in Figure 2.2.5. Features and
properties of the muon detectors are summarised in Table 2.2.5. The CMU, CMP,
CMX and IMU are drift chambers, there are also three scintillators, the CSP, CSX and
BSU, which are close to each drift chamber. These serve two main purposes, they are
used for triggering and deliver timing information to reduce background by identifying
which beam crossing produced a specific muon.

The CMU is made up of 144 modules each with 16 cells filled with the same mixture
of gases as the COT. In the centre of each cell there is a 50 µm stainless steel sense



Chapter 2. Experimental apparatus 51

- CMX - CMP - CMU

φ

η

0 1-1 �����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

����������������
����������������- IMU

Figure 2.10: Layout of the CDF muon detector components in azimuth and pseudorapidity

CMU CMP CMX IMU
Pseudo-rapidity range |η| < 0.6 |η| < 0.6 0.6 < |η| < 1.0 1.0 < |η| < 1.5
Drift tube cross section 2.68 x 6.35 cm 2.5 x 15 cm 2.5 x 15 cm 2.5 x 8.4 cm
Drift tube length 226 cm 640 cm 180 cm 363 cm
Minimum muon pT 1.4 GeV/c 2.2 GeV/c 1.4 GeV/c 1.4-2.0GeV/c
Pion interaction lengths 5.5 7.8 6.2 6.2-20

Table 2.1: Some important design parameters of the CDF II muon detectors [73]

wire. The signal from these wires is read out in pairs which are slightly offset in φ,
providing timing and amplitude measurements which give the z and φ position of the
muon. The CMU is shielded by the CHA, which is 5.5 pion interaction lengths of
absorbing material, to minimise the non-muon particles which reach this component.
However, it is possible for some non-muon particles, such as high momentum pions, to
reach the muon chambers, these are referred to as punch-throughs which result in fake
muons.

The first upgraded muon detector, the CMP, is behind an additional 60 cm of steel,
further reducing the chance of fake muon events being recorded. CMP measurements
therefore improve the muon identification, and a muon candidate with hits in both
the CMU and CMP (called a CMUP muon) has higher precision than one with CMU
information only. The CMP is rectangular in design, therefore has variable η coverage
with respect to φ, as shown in Figure 2.2.5. Sense wires in the CMP are read out
individually, and groups of hits in nearby wires can be combined with CMU information
for triggering.

The CMX is made up of conical sections with four layers of twelve drift tubes, and
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is associated with the CSX set of scintillation counters. These detectors extend the η
coverage of the muon system, lying at either end of the central detector components.
There is no additional shielding for the CMX, but the large angle from the interaction
point means that to leave a stub in the CMX, particles travel through significantly more
material than those which reach the CMU.

The furthest reaching muon detector in η is the IMU, which has trigger capability
for muons with |η| < 1.5 and can be used in offline reconstruction of up to |η| < 2.0
muons. The drift chambers of the IMU of the same type as in the CMP, and are
arranged in barrel structures. The readout from the IMU is linked with scintillator
timing information for the trigger and muon identification.

2.2.6 Luminosity detectors

CDF has two dedicated luminosity detectors, the Cherenkov Luminosity Counters
(CLCs), which are innovative devices for making precision measurements in the high
luminosity regime. Prior to CDF Run II, luminosity measurement at hadron machines
was usually carried out with scintillating counters which recorded the number of bunch
crossings with no interactions. For high luminosities this technique is not practical as
the number of bunch crossings with no interactions is minimal, so it is necessary to
directly measure the number of interactions. High precision luminosity measurements
are essential for analyses, such as cross-section measurements, which require knowledge
of the total integrated luminosity in a dataset. From the CLCs, the average number of
particles per bunch crossing is measured by the amount of Cherenkov light collected,
and this can be used to estimate the number of inelastic pp̄ interactions in each bunch
crossing.

The CLCs are placed at either end of the CDF detector, in the end plug calorimeters,
covering the pseudo-rapidity range 3.7 < |η| < 4.7 [74]. They are each made up of 48
long conical Cherenkov counters, filled with isobutane gas, arranged in 3 concentric
layers about the beampipe. Small, fast PMTs are used to collect the Cherenkov light,
and backgrounds such as secondary particles are excluded by setting suitable light
thresholds.

2.3 Triggers and Data Acquisition

The collision rate in a hadron collider such as the Tevatron is orders of magnitude
higher than the rate at which data can be recorded. The CDF Run II data acquisition
system (DAQ) can write to tape at around 75-100 Hz, whereas the collision rate is 7.6
MHz, so it is essential to filter out only the interesting physics events at an early stage
in the data taking. Removing minimum bias events and selecting only processes of
interest reduces the amount of data to be stored to a manageable rate, for example the
cross section for B physics events is about 1/1000 the total cross section for hadronic
processes. This selection process is implemented via a trigger system using hardware
and software components, and is done in real-time as data is collected.

The CDF trigger system [75] has three levels, each making a tighter selection, the
data flow through each level is shown in Figure 2.11. The first level (L1) is a buffered,
hardware trigger. The level 2 (L2) trigger is a combined hardware and software sys-
tem. Level 3 (L3) is a software trigger which applies a more complex selection and
reconstruction to events passing the hardware trigger levels. The system aims to be
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deadtimeless because the buffering means that the output rate of each level matches
the rate processable by the next level.

An event can be selected and written to tape by passing any of about 100 different
sets of requirements in the L1, L2 and L3 triggers, these sets are called trigger paths.
The trigger path used to select events for the analysis described in this thesis is the
dimuon trigger which sets requirements for events with two muon candidates from a
J/ψ decay vertex.

L2 trigger

Detector

L3 Farm
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Figure 2.11: Data flow through the CDF Run II trigger system, showing the acceptance rate
for each stage.

Level 1 trigger

The Level 1 trigger reads events from every bunch crossing, its decision is based
on a subset of detector information which is used to find and count physics events.
Figure 2.12 shows the input from each detector component to the two hardware level
triggers. The hardware for the Level 1 trigger is synchronous; it takes inputs from
three parallel streams, calorimeter based, muons and central tracking. Trigger paths
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selecting muon and electron events require track matching between the COT and outer
detector components, so information from the tracking is passed to the calorimeter and
muon streams in addition to the track only stream. The three Level 1 streams are
synchronised to the same clock, and a global Level 1 decision is made every 132 ns.

RUN II TRIGGER SYSTEM
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Figure 2.12: Block diagram of the CDF Run II trigger system

The Level 1 calorimetry trigger has two roles, triggering on specific objects (elec-
trons, photons, hadron jets) and on global energy (total or missing energy). The global
triggers sum information from all calorimeter towers to calculate the total energy of an
event, or the missing energy according to energy/momentum conservation. There are
two types of Level 1 calorimeter object triggers: single object, where a single object
such as an electron from W → eν is accepted, and di-object where a tighter selec-
tion is required due to a higher rate for events such as J/ψ → ee. The Level 1 muon
trigger selects single and dimuon objects, starting with track primitives in each muon
detector element which are then developed into a trigger decision from the combined
muon system for each beam crossing. The muon (dimuon) primitives are derived from
patterns of hits in the muon wire chambers, and single or coincident hits from the muon
scintillators.
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Triggering on tracks at Level 1 is important in identifying high momentum leptons
and low momentum charged tracks. The L1 track based trigger uses the eXtremely
Fast Tracker (XFT) [76] to identify in real time tracks in the COT. In order to deliver
results in time for each global Level 1 trigger decision, the XFT has < 1.5 µs to find
tracks. The XFT processor has three stages, using programmable logic devices (PLDs)
to implement pattern recognition algorithms for hit classification, segment finding and
segment linking. The Finder algorithm selects track segments with high transverse
momentum (pT ) in each of the four super layers of the COT. This information is used
by the Linker algorithm to match segments across the four super layers, aiming to find
a match in four out of four of the layers, or three out of three of the innermost layers,
consistent with a track coming from a high pT charged particle. The minimum track
pT found by the XFT is 1.5GeV/c, this level is motivated by the fact that muons with
pT < 1.5GeV/c are stopped by the calorimeters before reaching the muon chambers.
XFT output is used in conjunction with the EM calorimeter to identify electrons and
matched to stubs in the muon chambers to select muon candidates.

The global Level 1 trigger decision is issued by the Level 1 Decision card which
combines the single-bit trigger signals from the sub-components of the trigger to form
the final Level 1 trigger.

Level 2 trigger

A set of asynchronous subsystems make up the Level 2 trigger hardware, giving
input to the programmable Level 2 processors which perform some initial, limited,
event reconstruction. A Level 1 accept leads an event to be read into one of four Level
2 buffers to be analysed by the more detailed Level 2 trigger. While Level 2 is analysing
the event, that buffer cannot take further data from Level 1, so if all 4 buffers are filled
it causes deadtime. To maintain an acceptable level of deadtime with a Level 1 rate of
50 kHz, the Level 2 processing time would need to be <16 µs, however the actual Level
2 processing time is around 20 µs. To get around this, Level 2 is pipelined in two 10
µs stages. Data is taken from the Level 1 XFT and Level 1 muon trigger systems and
the showermax detector of the calorimetry system, and calorimeter data and tracking is
processed simultaneously. The final stage is to check whether the processed data passes
any of the trigger paths at Level 2.

The Level 2 calorimeter trigger component finds clusters of calorimeter towers with
energy above a threshold value to form jets. The EM showermax detectors are used
at Level 2 to reduce the background from fake electrons and photons. By matching
COT tracks to showermax clusters, combinatorial backgrounds for electron triggers are
greatly reduced as the resolution in the showermax is finer than the main calorimeter
wedges. The muon trigger at Level 2 uses finer resolution angular bins than at Level 1,
and improves on the muon selection precision.

The Silicon Vertex Tracker (SVT) has particular importance for B physics, and for
certain electroweak measurements with b-jet signatures. A displaced secondary vertex
in the Silicon detectors indicates the decay of a relatively long lived particle such as a
meson containing a b quark. Reconstructing the secondary vertex is too time consuming
at the trigger level, but this can be approximated by selecting events with a large impact
parameter with respect to the p−p̄ interaction point. The capacity to trigger on impact-
parameter at Level 2 opens up many B decay channels which would be virtually unseen
in other triggers. However as discussed previously the decay channel of interest in this
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thesis, B0
s → J/ψφ, is selected via the dimuon trigger; the displaced vertex trigger is

not used to select the dataset for this analysis.

The structure of the SVT reflects that of the silicon detectors themselves [77], hav-
ing a 12-fold azimuthal symmetry, thus each phi segment of the detector is processed
separately. For events which pass the Level 1 XFT trigger, the SVT links the COT
hits with deposits of charge in the silicon detector by comparison with a large set of
predefined patterns which indicate the most probable coincidences. The track output
is combined to produce an impact parameter with 50 µm resolution when convoluted
with the beam spot.

Level 3 trigger

The output rate of Level 2 is about 350 Hz, which is reduced to 100 Hz after Level
3 selection is completed. After being accepted by the Level 2 trigger, event fragments
are assembled by the DAQ system and processed by the software trigger Level 3 which
is a farm of 256 dual processor Linux PCs [78]. The Level 3 trigger performs event
reconstruction using algorithms which are almost the same as those used offline in order
to give an accept/reject decision on every possible trigger path for each event.



Chapter 3

Data selection and particle ID

This chapter describes the selection and reconstruction of the data sample used
in the measurement of βJ/ψφs . Also explained is the use of particle ID, and the
comprehensive calibration of dE/dx, which is used in the separation of pions and
kaons. PID is of particular importance for selecting kaons from φ→ K+K−, and in
kaon based flavour tagging. The Neural Network used to make the main selection of
events, its training, and optimisation are explained. The flavour tagging algorithms
used to separate B0

s and B̄0
s events, and their calibration are also described. Finally,

the Monte Carlo simulated data sample used in several parts of the analysis is
described.

3.1 Data sample

The data used in this measurement was collected using the CDF Run-II detector
between February 2002-July 2009, and corresponds to an integrated luminosity of L=5.2
fb−1. The modes reconstructed are:

• B0
s → J/ψ φ, J/ψ → µ+µ−, φ→ K+K−,

for the measurement of β
J/ψφ
s

• B+ → J/ψK+, J/ψ → µ+µ−

for the validation and calibration of the Opposite Side Tagger (OST) used in
flavour tagging of the initial B meson flavour, which will be described in Chapter 4.

The online selection is done using the dimuon triggers, which select any event passing
the trigger level muon ID cuts for events coming from J/ψ → µµ. This allows a large
proportion of events from non-B decays to enter the sample, such as prompt J/ψ from
pp̄ directly, which are not of interest for this analysis. These are called background
events, while the B0

s → J/ψ φ events are referred to as signal. It is not possible to
remove all background events from the sample, but a much tighter selection is required
than the trigger in order to perform the analysis. The selection is applied in two stages;
after event reconstruction the events are passed through preselection, a loose set of cuts
designed to initially focus on the signal region, then the preselected data is fed into a
Neural Network to perform high level background suppression.

The following subsections describe the event reconstruction and selection processes
used to obtain the analysis sample, and the optimisation and calibrations performed at
each stage.

57
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3.2 Trigger requirements

The dimuon, or J/ψ, trigger sample is selected based on trigger requirements at
Level 1 and Level 3. To pass Level 1, the event must have two muon stubs (see Sec-
tion 2.2.5), either both in the CMU, or one in the CMU and one in the CMX. The muon
stubs have to be matched to an XFT track, for the CMU stubs this must have pT> 1.5
GeV/c, for CMX PT > 2.0GeV/c. The Level 2 and 3 triggers further impose that the
pair of muons must have opposite charge and ensure that track matching requirements
are met. Additionally, to check that the two muons are from the same decaying particle,
there is a condition on the position in z of the two tracks of |ztrack1− ztrack2| < 5 cm at
their closest point to the origin. The invariant mass of the dimuon pair is selected in a
window around the J/ψ mass, of 2.7 < mµµ < 4 GeV/c2.

3.3 Event reconstuction and variables of interest

Events which pass the trigger requirements described in the previous section are
written to tape, and can then be analysed in more detail offline. At this stage it is
useful to define certain quantities which are used in the selection process.

Charged particles in the CDF tracking volume move with helical trajectories due to
the magnetic field of the solenoid. There are five parameters defined to reconstruct the
path, or track of a particle at CDF

• C
half-curvature of the helix, C ≡ q

2R
where q is the charge of the particle and R is

the radius of the helix.

• cot θ
helix pitch, θ is the polar angle at the point where the track is closest to the
z-axis, which can be related to momentum as cot θ = pz/pT

• φ0

direction in φ of the track where it is closest to the z-axis

• d0

signed impact parameter of the track, this is the point of closest approach to the
z axis, given by q[p̂× d] · ẑ, where q is the charge, p̂ and ẑ are the unit vectors in
the momentum and z directions, and d is the vector from the interaction point to
the closest point in the track.

• z0

the position in z at the point where the track is closest to the z-axis.

The transverse momentum, pT is given by pT = cB/(2|C|), where c is the speed of
light and B is the magnetic field of the solenoid. The parameters above are extracted
from a fit to hits in the COT and SVX. The primary vertex is the point of the pp̄
collisions. The secondary vertex is a point away from the pp̄ interaction region where
tracks intersect.
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J/ψ reconstruction

As explained in the previous section, events are selected using the dimuon trigger,
which passes only events with opposite sign dimuon pairs. These pairs are analysed
and fitted to a common vertex to obtain a χ2, estimated vertex position and vertex-
constrained tracks [79]. Important quantities such as the J/ψ invariant mass and pT
are then estimated from the refitted tracks.

φ reconstruction

To find φ candidates, oppositely charged pairs of non-muon tracks coming from a
displaced vertex fitted by a kinematic fitting algorithm [79] are examined if they are
within events containing a J/ψ. The two tracks are initially assumed to be kaons. At
a later stage, a probability for them to actually be kaons is assigned based on dE/dx
and TOF.

Variables of interest

After the 4-track vertex fit is performed, the best fit values of the B0
s momenta and

its daughter particles are obtained. These are used to calculate the angular variables
described in Section 1.5 which are used in the separation of the CP eigenstates. One of
the most important calculated variables in the study of B0

s → J/ψ φ is the B-meson
proper decay length, which is the time to decay in the hadron’s rest frame × c (the
speed of light). This is constructed from the primary vertex (the production point of
the B meson) and the secondary vertex or decay point. The event tracks are used to
locate the secondary vertex and reconstruct the B meson and its four-momentum.

The proper decay length is calculated in the transverse plane, using the transverse
decay length, Lxy of the B meson

Lxy =
~V · ~pT
|~pT | (3.1)

where ~V is the 2D vector from the primary to the secondary vertex, and ~pT is the
transverse momentum vector. From this, the proper decay length is

cτ =
MLxy
pT

(3.2)

Where M is the world average B meson mass. Associated with the proper decay length
is its event by event uncertainty σcτ which is obtained from the error on Lxy, the
components from the other parameters being treated as negligible [80].

The transversity angles were defined in Section 1.5.2. Using those definitions they
can be calculated by first boosting the four-momenta of the decay particles into the
B0
s meson rest frame. The world average B0

s mass and the reconstructed momentum
of the B0

s are used to calculate this boost vector. To then boost into the J/ψ frame
the world average J/ψ mass is used, together with the reconstructed J/ψ momentum,
and to calculate the boost vector into the φ meson rest frame the reconstructed K+K−

mass and momentum are used. The use of the world average or the reconstructed mass
for each particle type is motivated by the natural width of the particle. For the case
of the φ meson, its natural width is close to the resolution of the CDF detector, so
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the reconstructed mass is used, but the B0
s and J/ψ have widths far smaller than the

resolution so it is more accurate to use the world average mass.

The helicity angle ψ, of the K+ is defined as

cosψ = −
~pφK+ · ~pφJ/ψ
|~pφK+ | · |~pφJ/ψ|

. (3.3)

where ~pBA is the three momentum of particle A in the rest frame of particle B. A
coordinate system is defined in order to calculate the other two angles

x̂ =
~p
J/ψ
φ

|~p J/ψφ |
,

ŷ =
~p
J/ψ

K+ −
(
~p
J/ψ

K+ · x̂
)
x̂

|~p J/ψK+ −
(
~p
J/ψ

K+ · x̂
)
x̂|
,

ẑ = x̂× ŷ. (3.4)

This is used to calculate ψ and cos θ

cos θ =
~p
J/ψ

µ+

|~p J/ψµ+ |
· ẑ, (3.5)

φ = tan−1

((
~p
J/ψ

µ+

|~p J/ψµ+ |
· ŷ

)
/

(
~p
J/ψ

µ+

|~p J/ψµ+ |
· x̂

))
, (3.6)

The signs of ~p
J/ψ

µ+ · x̂ and ~p
J/ψ

µ+ · ŷ are used to resolve the ambiguity of the angle φ.

Both the preselection and final NN selection require the following variables to assess
the probability of a specific particle type hypothesis:

• χ2
rφ (p)

The χ2 for the kinematic fit for particle p in the transverse plane, including the
relevant mass and topology constraints.

• P(χ2,p)
The χ2 probability of the kinematic fit, based on the full χ2 with the z-direction
included.

• LLµ(p)
Likelihood based quantity for muon ID, developed for the soft muon tagger [81],
which uses track-stub matching parameters and calorimeter information to dis-
criminate real from fake muons.

• LLK(p)
Likelihood based combined particle ID (PID) discriminant, using TOF and dE/dx
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information specifically for kaon selection. Constructed as:

LLK(p) =
PK
dE/dx(p)P

K
TOF (p)∑

j=π,K,p

fjP
j
dE/dx(p)P

j
TOF (p)

(3.7)

where P i
dE/dx,TOF are the probabilities of observing the measured dE/dx or TOF

of the particle under the hypothesis that i = π,K, p. The fractions, fi are related
to the production of pions, kaons and protons in CDF. The particle ID variables
will be discussed in more detail in Section 3.4

3.4 Particle ID

Particle identification (PID) plays an important role in two aspects of this anal-
ysis, as a component in the discriminating variables of the neural network selection
(Section 3.6), and in selecting kaon tracks for flavour tagging (Chapter 4). The two
quantities used as PID to distinguish pions from kaons at CDF were introduced in
Chapter 2: Time of Flight, using the dedicated TOF detector, and dE/dx using the
COT.

3.4.1 Charged particle ionisation energy loss: dE/dx

The ionisation energy loss of a charged particle as it moves through matter is given
by the Bethe-Bloch formula [21]

〈
dE

dx

〉
=

4πNe4

mec2β2
q2

[
ln

2mec
2(βγ)2

I2
− β2

]
(3.8)

where N is the number density of electrons in the material of interest, e is the elec-
tron charge, me the electron mass, q the particle’s charge, βc the particle’s speed,γ =
1/

√
1− β2, and I is the mean excitation energy for atoms in the material. For a ma-

terial with known properties, such as the gas in the COT, this equation can yield a
measurement of the particle’s mass when combined with a momentum measurement,
which can then be compared to known particle masses in order to estimate the particle
type.

The Bethe-Bloch formula is empirically modified to better model the CDF detector,
as [82]

〈
dE

dx

〉
=

1

β2

[
c1 ln

(
βγ

b+ βγ

)
+ c0

]
+ a1(β − 1) + a2(β − 1)2 + C (3.9)

where ai, b, cj and C are free parameters which float when fitting the data. From
Equation 3.9, a universal curve can be plotted against βγ. An example of the CDF
universal curve for several particle types is shown in Figure 3.1, next to a plot of the
momentum dependence of measured dE/dx for different particles which demonstrates
the ability to separate particle types using dE/dx and momentum. This separation
when dE/dx is plotted against momentum occurs because the dependence on βγ is an
implicit function of mass and momentum, as β = v/c and momentum = mv.

The amount of ionisation charge produced by a charged particle near a COT sense
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Figure 3.1: [left]Universal Curve showing combination of pions, kaons, protons and muons,
[right] momentum dependence for (from left) muons, pions, kaons, protons and (top) electrons
at CDF [83]

wires affects the signal strength in the wire. dE/dx is measured as the amount of
charge, above a threshold value, which is proportional to the width (∆t) of the pulse
from the readout chip. Thus dE/dx values are given in nanoseconds rather than a unit
of energy.

dE/dx calibration

While the measured dE/dx should only depend on the boost, βγ, of a particle
(as shown in Equation 3.8) the measurement capability of the COT for dE/dx is not
perfect and introduces effects due to both environmental and kinematic variables. These
dependences reduce the power of the dE/dx variable to separate between particle types,
so in order to optimise PID at CDF the measured dE/dx must be calibrated to remove
or minimise these dependences. The steps taken to correct the detector and kinematic
effects on measured dE/dx in the COT are described in the following subsections.

Calibration data sample

To calibrate the dE/dx, pure samples of pions and of kaons are used [84]. These are
obtained from D0 decays, where the flavour of the D0 meson is unambiguously identified
by the sign of the D∗ which produces it. The D∗ charge is tagged by the sign of the soft
pion πs, a low-momentum pion, in the decay chain D∗+ → D0π+

s , D
0 → K−π+ and its

charge conjugate.

The sample is reconstructed from an impact parameter based trigger, using data
taken between February 2002-April 2008. This is a dataset with high statistics, the
following cuts are applied to obtain a signal sample

• sgn(d0(K)× d0(π)) <0 to ensure opposite charge kaon and pion

• Lxy(D
0) > 300µm

• |d0(D
0)| < 140µm

• pT (πs) > 0.4 GeV/c

• d0(πs) < 500µm
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• m(D0) within ± 25 MeV/c2 of world average

• ∆m(D∗) ≡ m(D∗)−m(D0)−m(πs) within 1.5 MeV/c2 of World average

The variable ∆m(D∗) is very powerful in reducing background coming from real D0

combined with random (wrong) soft pion tracks to form a D∗ candidate. The yield,
and distribution of ∆m(D∗) with all cuts applied are shown in Figure 3.2. The ∆m(D∗)
distribution demonstrates the power of this variable in distinguishing between real and
fake D∗, as the accidental combinations of random tracks with a real D0 which do not
come from D∗ have a flat, non-peaking distribution in ∆m(D∗) and can thus be largely
eliminated with a tight restriction on this value.
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Figure 3.2: [left] D0 invariant mass distribution after selection cuts applied [right] m(D∗) −
m(D0)−m(πs) distribution with cuts applied. The red part shows the region selected by the
cuts.

Calibration procedure

Using the obtained high purity samples of kaons and pions, studies were carried
out to assess the variation in measured dE/dx response as a function of kinematic
and environmental parameters. After selecting the most significant effects, these are
checked for factorisability - whether they could be corrected independently or must
be treated simultaneously due to interdependence. The dependences are corrected for
by calculating and applying multiplicative correction factors, either independently or
simultaneously as determined in the previous step. For a useful PID variable, it is
necessary to know the predicted value dependent on momentum for a given particle
hypothesis, so after the calibration factors have been calculated the Universal Curve
is fitted on the data after calibration, using Equation 3.9. Also used when dE/dx is
included in a likelihood parameter for event selection are the resolution functions, which
parameterise the residual dE/dxmeasured − dE/dxpredicted, so these must be fitted.

Correcting the effects

The measured dE/dx shows significant dependence on six variables, to varying ex-
tents of severity. In principle these can be corrected, and so were studied to find which
could be treated independently (were factorisable) or had to be simultaneously cor-
rected, and which, if any had some momentum dependence. The size of each effect is
estimated from the variations in the uncalibrated dE/dx distributions in Figure 3.3.
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The decision to treat an effect independently, or to correct it simultaneously with other
correlated parameters was motivated by studying the dE/dx dependence of each pa-
rameter, in slices of every other parameter in the study, as shown in Appendix A. If the
distribution of dE/dx with respect to a particular parameter varied across the different
slices of another parameter (other than a simple up or down shift in the whole distri-
bution), the dE/dx dependence on those two parameters would need to be corrected
for simultaneously.

The following effects are corrected for

• Time
A variation in dE/dx of ∼ 5 ns as a function of time (indicating a variation with
run number).
The dependence of dE/dx on time is understood to be due to several properties
of the drift chamber which have varied since the start of Run-II. One example
of this is that in 2006, the two inner layers of the COT had dE/dx read out
switched off in order to maintain tracking capabilities at high luminosity. The
fact that the delivered luminosity from the Tevatron has increased significantly
over the run period also affects measured dE/dx. Additionally, aging of the COT
can affect the amount of charge collected for dE/dx measurement. This effect
exhibits correlations with luminosity, number of COT hits, and track density
(Figures in Appendix A); variations in these parameters are calibrated for in a
4-dimensional simultaneous correction.

• Luminosity
A variation of ∼ 4 ns with respect to instantaneous luminosity.
This interdependence is to be expected given the time dependence of luminosity
itself, and the increase in occupancy of the COT in higher luminosity running
will affect the number of hits, and the density of tracks. Higher occupancy in the
COT means a larger number of tracks which could be in the region of the track of
interest, and could contribute to the measured charge deposit for that track. This
causes an artificially raised dE/dx measurement for higher luminosity events.

• COT hits
An effect of ∼ 4 ns depending on the number of hits in the COT for a given track
Past dE/dx calibrations [85] found a significant dependence on the number of
associated COT hits for a track. This is itself correlated with other occupancy
related variables.

• Secance (track density)
A ∼ 3 ns variation dependent on the track density in the vicinity of the candidate,
measured as the number of r − φ intersections of the candidate track with other
tracks within the COT.
There is no longitudinal segmentation in the wires of the COT, so the charge
deposited by any hit axially in the region of the candidate track can be counted
towards the dE/dx of that track. Secance is a variable which has been constructed
to count the number of tracks intersecting the candidate track, which was found
to be a more effective quantity than a more traditional approach such as track
isolation. An assumption has to be made in correcting this parameter, that the
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number of reconstructed tracks for an event is proportional to the total number
of tracks, as only the reconstructed tracks are accessible in the dataset.

• η
An effect of ∼ 2.5 ns according to the track pseudorapidity
The pseudorapidity is a function of transverse momentum, and therefore there
will be some intrinsic variation in measured dE/dx with η as the momentum
dependence is a physical effect, η is the only variable which exhibits a significant
momentum dependence. This parameter demonstrated independence from the
other parameters in the study shown in Appendix A, so can be corrected for
separately.

• φ0

A variation of ∼ 2 ns as a function of the azimuthal angle of the track
This parameter can be corrected for independently as the effect has been shown
to factorise with the other studied variables, modulo a global shift due to the
change in mean dE/dx measured, in Appendix A. Variations in the measured
dE/dx for particles traversing different sectors of the COT can be explained by
the temperature gradient and the flow of gas within the chamber. The variable
chosen to measure this effect is the track φ0, which gives the initial azimuthal
direction within the COT and therefore is expected to show clearly any variations
which occur due to the effects mentioned.

The size of the dE/dx variations with the above parameters is shown in Figure 3.3,
before and after the corrections have been applied. The size of these dependences is
comparable to the average separation in dE/dx between kaons and pions of just 1.5 ns.

Correction function

In order to find the correction factors necessary to reduce the dE/dx dependence
on the parameters introduced in the previous subsection, a correction function of the
form:

dE/dx = f(φ0)× g(η|p)× h(H, L, T, S) (3.10)

where the segments on the right of the equation are the separate correction functions
for φ0 (f), pseudorapidity - conditional on momentum (g) and the 4-dimensional simul-
taneous correction for number of COT hits, H, luminosity L, time (run number) T ,
and secance S (h).

To calculate the correction factors which go into equation 3.10 the data is divided
up into bins of the above quantities, and the dE/dx dependence on each filled into
histograms. The factorisable corrections use 1D histograms, the four interdependent
parameters use a 4-dimensional array which is treated in the same way as a histogram.
The binning is arranged such that each bin has comparable statistics. The mean dE/dx
value for the combined kaon-pion sample was found to be 17.7 ns, so this value is used
in re-weighting the bins. The content of bin i, 〈dE/dx〉i is reweighted by a multiplica-
tive weighting factor of wi = 17.7/〈dE/dx〉i resulting in flattened histograms in each
variable.

The red points in Figure 3.3 show the flattened variations in measured dE/dx after
these corrections have been applied to an independent test sample, which was separated
from the calibration sample to avoid effects from statistical correlations. These results
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show that the variations of dE/dx with the studied parameters is reduced to < 0.5 ns
after calibration. As η is dependent on momentum, there is some residual dE/dx depen-
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Figure 3.3: variations in measured dE/dx with several environmental and kinematic parame-
ters before and after calibration

dence on η after the calibrations have been applied when looking at the full momentum
spectrum as in Figure 3.3. This is expected, and when dE/dx is plotted against η for
slices of momentum the distribution is flat; examples are shown in Figure 3.4 for the
momentum ranges 2 < p < 3 GeV/c and 5 < p < 6 GeV/c. The remaining variations
in these plots are due to the reduced statistics from slicing the dataset into momentum
segments.
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Figure 3.4: variations in measured dE/dx with η in slices of momentum, to show the affect of
calibrations with momentum dependence removed. [Left] 2 < p < 3 GeV/c [Right] 5 < p <
6 GeV

Predicted dE/dx curves

To extract the curves of expected dE/dx as a function of momentum, the purity
of the sample was further enhanced by applying tighter cuts on the D0 mass (within
5 MeV of the world average) and ∆m(D∗) (within 1 MeV of the world average). This
reduces the potential for any bias to enter the curves from unknown backgrounds. The
dE/dx dependence on momentum curves for π+, π−, K+ and K− were fitted using the
CDF empirical modification of the Bethe-Bloch formula, Equation 3.9. Figure 3.5 shows
the projections of these fits onto the data points for the different particle types, and
demonstrates good agreement between the fit and data across the whole momentum
range.

The curves for the four studied particle types, positive and negative kaons and
pions, can be compared in Figure 3.6, showing the separation between the particle
species. As is clear from this plot, there is a systematic difference in the average dE/dx
response of the COT for positive and negatively charged particles, and this difference is
momentum dependent. The change in separation of the curves shown causes a drop-off
in performance with momentum for dE/dx as a PID tool, but for the momentum ranges
used in the B0

s → J/ψ φ analysis described in this thesis.

Using the predicted dE/dx curves, it is possible to construct dE/dx residuals,
(dE/dxmeas− dE/dxpredict) which are of interest in checking the flattening effect of the
calibrations on the variations described previously. The comparison of dE/dx residuals
before and after the calibrations are applied is shown in Figure 3.7. The slight improve-
ment in the calibrated residual distribution for η compared to the calibrated dE/dxmeas
is due to the fact that subtracting the predicted dE/dx removes any remaining momen-
tum dependent contributions.

Distribution of dE/dx residuals

These predicted dE/dx values are also used to prepare a set of functions used in PID
simulation for likelihood calculations, which are the fitted dE/dx residual distributions.
These are parameterised under the assumption that the particle is a pion (the pion
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Figure 3.5: dE/dx dependence on momentum for different particle types after calibration.

hypothesis), meaning that the measured dE/dx is shown with respect to the average
pion response. The functions are fitted using data for pions and kaons separately,
with the predicted dE/dx value for pions subtracted from the measured, calibrated,
dE/dx for each particle type. The distributions are dependent on the number of hits
in the COT and the particle momentum. To account for this, the data is divided into
momentum bins to fit the residual distributions, and an additional function consisting
of the fitted dependence on COT hits is calculated as a multiplicative correction. The
distributions of dE/dxK,πmeas − 〈dE/dxπ〉 for all momentum bins combined are shown
in Figure 3.8.

Performance

To assess the effect of calibrating the dE/dx on the PID performance of this variable,
the main figure of merit used is the pion-kaon separation power. This is studied by
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looking at the separation between residual dE/dx distributions for pions and kaons,
where perfect separation would mean no overlap in the distributions. The separation
value is traditionally quoted in terms of Gaussian sigma, but for non-perfect Gaussian
distributions this method is not appropriate. Instead, for a sample of N events, where
f is the fraction of pions and 1 − f the fraction of kaons, the statistical error on the
estimate of the pion fraction, σf is used to determine the separation power in terms of
the precision, (1/σf ) using [84]:

σ2
f =

1

N

[∫
(pπ(x)− pK(x))2

fpπ(x) + (1− f)pK(x)
dx

]−1

(3.11)

where x is the dE/dx residual and p{π,K} are the probability distributions of x for pions

and kaons. The upper bound on this quantity is 1/σbestf =
√
N/(f(1− f)), correspond-

ing to the ideal case where there is no overlap between the residual distributions for
pions and kaons.The separation power is then quoted as a fraction of the ideal case,
s = σbest

f /σf :

s =

√
f(1− f)

∫
(pπ(x)− pK(x))2

fpπ(x) + (1− f)pK(x)
dx. (3.12)

The separation, s can take any value in the range 0-1, where 1 corresponds to the
perfect separation described previously. The probability density functions which enter
Equation 3.12 are constructed from data residual distributions shown in Figure 3.9.
The value of separation for uncalibrated dE/dx is s = 48.8%, which increases after
calibration to s = 56.4%, a 22% improvement.

3.4.2 Time of Flight

Time of Flight is a complementary quantity to dE/dx, as it is most powerful at
separating pions from kaons at low momentum, p < 1.5 GeV/c. Particle identification



Chapter 3. Data selection and particle ID 70

]-1s-2cm30Instantaneous Luminosity [x10
0 20 40 60 80 100 120 140 160 180 200

 -
 <

d
E

/d
x>

m
ea

s
d

E
/d

x

-4

-3

-2

-1

0

1

2

3

4

dE/dx dependence on luminosity  - CDF Run II preliminary

before calibration

after calibration

dE/dx dependence on luminosity  - CDF Run II preliminary

secance [# intersecting tracks]
0 5 10 15 20 25 30

 -
 <

d
E

/d
x>

m
ea

s
d

E
/d

x

-4

-3

-2

-1

0

1

2

3

4

dE/dx dependence on secance - CDF Run II preliminary

before calibration

after calibration

dE/dx dependence on secance - CDF Run II preliminary

run number
140 160 180 200 220 240 260

310×

 -
 <

d
E

/d
x>

m
ea

s
d

E
/d

x

-4

-3

-2

-1

0

1

2

3

4

dE/dx dependence on time (run number) - CDF Run II preliminary

before calibration

after calibration

COT compromised gain

dE/dx dependence on time (run number) - CDF Run II preliminary

 [rad]
0

φ
0 1 2 3 4 5 6

 -
 <

d
E

/d
x>

m
ea

s
d

E
/d

x

-4

-3

-2

-1

0

1

2

3

4

dE/dx dependence on azimuthal angle - CDF Run II preliminary

before calibration

after calibration

dE/dx dependence on azimuthal angle - CDF Run II preliminary

eta 
-1 -0.5 0 0.5 1

 -
 <

d
E

/d
x>

m
ea

s
d

E
/d

x

-4

-3

-2

-1

0

1

2

3

4

dE/dx dependence on pseudorapidity - CDF Run II preliminary

before calibration

after calibration

dE/dx dependence on pseudorapidity - CDF Run II preliminary

# dE/dx hits
30 40 50 60 70 80

 -
 <

d
E

/d
x>

m
ea

s
d

E
/d

x

-4

-3

-2

-1

0

1

2

3

4

dE/dx dependence on # COT Hits - CDF Run II preliminary

before calibration

after calibration

dE/dx dependence on # COT Hits - CDF Run II preliminary

Figure 3.7: dE/dx residuals before and after calibration

using TOF utilises the relation

m =
p

c

√
c2t2flight − 1

L
(3.13)

where m is the predicted mass (which can be used to identify a particle by comparison
with known particle masses), c is the speed of light, L is the track length and p is the
particle momentum. The time of flight, tflight is measured as the difference between the
arrival time in the TOF detector scintillators, tTOF and the beam crossing time, t0.
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Figure 3.8: dE/dx dependences before and after calibration
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Figure 3.9: Data distributions for dE/dx residuals before and after calibration

Figure 3.10 shows an example of the TOF distribution for different particles, demon-
strating the separation according to mass, and the separation power for several particle
types compared to the K − π separation power of dE/dx.

Like dE/dx, TOF should be dependent only on the mass and momentum of a par-
ticle, however the detector and event kinematics can also affect this quantity. The
measured TOF therefore must be calibrated in order to obtain optimal separation be-
tween particle species. This is done using pure samples of each particle type separately;
the full calibration method for this variable is described in [87].

3.5 Preselection

Loose selection requirements are applied to reduce the sample size before running
the neural network and ensure reasonable candidates are included. These preselection
cuts are:

• 5.1 < J/ψφ invariant mass < 5.6 GeV/c2, this window is set to be 100 MeV
around the world average B0

s mass, a range large enough to avoid throwing away
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Figure 3.10: [left] TOF distribution of different particles, [right] separation power for TOF
compared to that of dE/dx [86]

any B0
s → J/ψ φ signal events

• pT (B0
s ) ≥ 4.0 GeV/c

• χ2
rφ < 50 for kinematic fit of four tracks constrained to come from secondary

vertex

• ≥ 10 axial and ≥ 10 stereo hits in the COT per track

• ≥ 3 axial hits per track in the silicon detector

• pT (K) ≥ 400 MeV/c for each kaon

• pT (φ) ≥ 1 GeV/c

• 3.04 < µµ invariant mass < 3.14 GeV/c2 to constrain to the J/ψ mass

• 1.009 < KK invariant mass < 1.028 GeV/c2 to constrain to φ mass

3.6 Neural Network

Rectangular cuts, such as those used in the preselection, veto any events which do
not fall into an accepted range for any given variable. This means that an individual
variable can determine whether an event is signal or background. An improved selection
method is to use an artificial neural network (NN), which takes information from all
input variables and combines it into a single decision variable in which the inputs
are weighted proportionally to their power in separating signal from background. The
weighting is determined by training the network on pure signal and background samples,
to indicate what characteristics are signal-like and background-like, and which variables
have the most power to distinguish these.

The artificial neural network used to make the final candidate selection was con-
structed using the NeuroBayes package [88] and trained using Monte Carlo simulated
events corresponding to 3.9 fb−1 data of a pure signal sample, and events from the
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B0
s mass sidebands as pure background. The signal sample consists of 350000 simu-

lated events, the background 300000 events. The mass sideband regions are defined as
5.2 < M(J/ψφ) < 5.3 GeV/c2 on the low side of the B0

s mass, and 5.45 < M(J/ψφ)
< 5.55 GeV/c2 on the high side. The simulated signal data is described in detail in
Section 3.8

The quantities used as inputs to the NN training were defined in Section 3.3, Ta-
ble 3.1 shows the ranking and significance of each input value [80]. The rightmost three
columns in the table show variables relating to the importance of the input quantity
to the overall performance of the NN. The added quantity (4th column) shows how
much power is added to that already achieved by the inputs above in the table by
adding a given input. The only (5th column) variable shows the information level if
only that input is used. The loss (6th column) variable describes how much information
is lost if that input is removed. The input variables are ranked by importance to the
performance of the NN, showing that, after the preselection cuts, the muon transverse
momentum and kaon likelihoods are of most importance to the signal selection.

Variable rank index added only loss
pT (φ) 1 5 438.14 438.14 157.97
LLK(K2) 2 11 159.28 379.61 121.44
LLK(K1) 3 10 106.55 376.28 99.49
LLµ(µ2) 4 9 78.00 147.66 44.83
χ2
rφ(Bs) 5 2 67.52 163.62 27.32
pT (Bs) 6 3 39.68 270.93 33.19
LLµ(µ1) 7 8 22.78 140.72 22.67
P (χ2, Bs) 8 4 21.85 132.42 18.80
P (χ2, φ 9 6 13.18 23.95 12.66
P (χ2, J/ψ) 10 7 7.36 51.21 7.36

Table 3.1: NN inputs for B0
s → J/ψ φ signal selection, ranked according to their importance

to the NN decision.

As can be seen from Table 3.1, not all of reconstructed parameters for the data are
used as inputs to the NN. For sets of highly correlated parameters, only one parameter
is used because after the first of the set, the subsequent parameters would add little
discrimination power to the NN. The correlations between the inputs listed in Table 3.1
are shown in Figure 3.11 where the first column is the truth (signal or background)
value, and the other columns have the same ordering as in the table.

The output of the NN for signal and background using the training samples is shown
in Figure 3.12. The network returns a value between -1 and +1, where +1 implies a
high degree of confidence that the event is signal, and -1 the same for background. In
the same figure, the signal purity as a function of NN output is shown, where the ideal
case is a gradient of 1 showing good correlation between the network output and the
signal purity.

3.6.1 NN optimisation

Having trained the NN and studied its output for pure signal and background, it
is necessary to select the best output value to cut on in order to achieve a high degree
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of signal purity as well as a good signal yield. Selecting a high NN output value as
a cutoff will produce a very pure signal, but will restrict the number of signal events
available therefore reducing the statistical power of the sample. A threshold which is
too low will increase the statistics, but the separation between signal and background
will be inefficient. The NN must be studied on the real data sample size to optimise
the cut value.

A common way of selecting the NN cut value is to maximise the quantity S/
√

(S+
B), where S is the number of signal events and B is the number of background. However,
in this statistically limited data sample it is important to gain all possible signal yield,
so instead the quantity studied to optimise the cut is the sensitivity to β

J/ψφ
s in terms
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of statistical errors. This is done by investigating the size of the statistical errors on
β
J/ψφ
s in different samples of pseudo experiments relative to the NN cut. The fast Monte

Carlo simulation used to generate these pseudo experiments is described in Chapter 5.

Pseudo experiments are generated corresponding to different NN cut values by
choosing the associated signal and background numbers for each cut value. Studies
are carried out for three potential true values of β

J/ψφ
s ; 0.02, 0.3 and 0.5 as the NN cut

should be optimised for a full range of possible β
J/ψφ
s measurements. For each of these

β
J/ψφ
s values, the decay width difference ∆Γ is generated according to the theoretical

relationship between these parameters, and all other variables are generated according
to their best fit values from the previous B0

s → J/ψ φ analysis [7]. About 700 pseudo

experiments are generated and fit for each case, and the β
J/ψφ
s statistical uncertainty is

checked at each NN cut value. The error distribution is fitted with a Landau function
to determine the most probable value of the statistical error for β

J/ψφ
s at each NN cut

value for the three input values of β
J/ψφ
s , these fitted values are plotted against the NN

cut level and shown in figure 3.13. From this study, it was determined that the optimal
NN cut value is 0.2, which minimises β

J/ψφ
s errors by maximising signal yield despite

being a looser cut than would be selected by the traditional S/
√

(S + B) optimisa-
tion. The signal yield, number of background events, signal to background ratio and
S/

√
(S +B) are shown as functions of the NN cut value in Figure 3.14.
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Figure 3.13: Fitted β
J/ψφ
s statistical errors vs. NN cut value for three potential true values

of βJ/ψφs in pseudo experiments, from which a value of 0.2 is selected as the NN cut threshold.

The B0
s → J/ψ φ yield after NN selection has been applied is shown in terms of the

B0
s mass distribution in Figure 3.15, fitted as described in Section 4.3.

3.7 Flavour tagging

The flavour taggers used in this analysis were developed for the CDF B0
s mixing

measurement, and have been re-calibrated and optimised for the B0
s → J/ψ φ analysis.

The following subsections describe the algorithms used for these two tagging methods,
but first it is useful to describe some common principles of all flavour taggers.

The tag decision, ξ is a discrete variable, which can have the value -1,0 and 1. A
value of ξ = −1 implies that the initial B meson state was tagged as B̄0

s , for a B0
s meson

initial state, the tag decision is ξ =1, and when the tagger was unable to determine the
initial state the value is ξ=0.
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For both tagger types, the necessary information may not be available in every event
to make a flavour decision; the fraction of events for which a decision can be made is
called the tagging efficiency. The efficiency is defined as

ε =
Ntagged

Nuntagged +Ntagged

. (3.14)

The decision of the tagger is not always correct, misidentification of a track type
or selecting a track which is not from the correct decay vertex can lead to a mis-tag.
The quantity defined to characterise the rate of mis-tagging for a particular algorithm
is called dilution, D, which is measured as

D = 1− 2PW ≡ NR −NW

NR +NW

(3.15)

where NR is the number of correctly tagged events in a sample, NW is the number of
wrongly tagged events, and PW is the probability of an event being wrongly tagged.
The dilution variable is constructed such that a tagging algorithm which randomly
assigns decisions, therefore having a wrong tag probability of 0.5, will have D = 0,
and a perfect tagger with PW=0 will have D = 1. For each tagger, the probability of
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Figure 3.15: B0
s mass distribution after preselection and NN cuts applied, yielding ∼ 6500

signal B0
s → J/ψ φ events, fitted with a single Gaussian for the signal and a first order

polynomial for the background component, as described in Section 4.3.

wrongly tagging the flavour of an event is parameterised, so that the dilution can be
predicted on an event by event basis. This prediction can be used to weight events in
a likelihood function so that events with higher confidence in the flavour tagging can
have a larger contribution. Additionally, the predicted dilution allows porting of the
tagging algorithm from the dataset on which it was developed or calibrated, to other
samples.

The measure of performance of a flavour tagger is called the effective tagging ef-
ficiency, and is defined as εD2, where in this case D is the average dilution over the
whole sample.

3.7.1 Opposite side tagger

The principle of the OST was introduced in Section 1.5.1. Using the knowledge
that a B meson of interest hadronised from one b quark of a bb̄ pair, the opposite side
tagging algorithms get the initial flavour of that meson from the hadronisation of the
other b(b̄) quark. This is done in two ways

• by identifying the charge of the lepton from semileptonic B decays (soft electron
and soft muon taggers, SET and SMT).

• by identifying the charge of the opposite side b jet (jet charge tagger, JQT).

These processes are completely independent from the candidate side hadronisation and
decay, so it is possible to transfer opposite side tagging algorithms between samples of
different B types. This means that the algorithms can be developed on light B meson
samples, which have significantly higher statistics due to their larger branching ratios,
than B0

s samples, then applied to tag B0
s mesons. Events from the l+SVT trigger

sample are used for tagger development and parameterisation of the predicted dilution
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in high statistics samples. The taggers are then calibrated on di-muon samples, as
described later in this section, finding a global scale factor SD which can be applied to
the event by event dilution to account for kinematic differences in the two samples.

The opposite side lepton taggers exploit the semi-leptonic decay of the opposite side
B meson, where the b flavour is tagged as

b→ c l−ν̄lX

b̄→ c̄ l+νlX (3.16)

so that a positive lepton implies a b̄, meaning that the quark in the B0
s was a b.

Separate algorithms are used for electrons and muons as opposite side lepton tags.
The SET is described in detail in [89] and the SMT in [90]. The efficiency of these
taggers is rather low, of order 20%, which is similar to the branching fraction of B to
semileptonic decays. The tagging dilution is worsened by mis-identification of leptons,
and B0 mesons oscillating to the opposite of their production flavour and therefore
giving an incorrect tag. The predicted tagging dilution for the lepton taggers is a
function of pT and the lepton likelihood (the confidence in the lepton identification
derived from calorimeter and dE/dx data), and is given in full in [89]. Well identified
leptons with high pT lead to a good dilution. It is clear that a good lepton probability
will improve the tagging quality, the improvement with higher momentum leptons is
due to the fact that leptons from b decays are likely to have higher momentum in the
transverse plane than those from lighter quarks, due to a larger available phase space.

The jet charge tagger [91] infers the flavour of the candidate B0
s from the charge

of the opposite side b jet. The jet charge is calculated as the momentum weighted sum
of all charges in the jet. This is done by selecting tracks isolated from the candidate
meson, as it is important to look at jets only from the opposite side, then using neural
networks to find the jet most likely to come from a b quark. One NN is used to assess
the probability of an individual track as coming from a B meson, Ptrk, which is highly
dependent on the impact parameter of the tracks, as a displaced vertex is a key feature
of b decays. A second NN is used to find Pjet, the probability of a jet as containing
a b quark. This quantity is based on the number of tracks in a jet with a high Pjet,
and whether the jet is tagged as being from a displaced vertex with a high decay
length significance. The most probable b jet is then selected, and the weighted charge
calculated as

Qjet =

Ntracks∑
i

QipiT (1 + P i
trk)

Ntracks∑
i

piT (1 + P i
trk)

(3.17)

The dilution for this tagger is parameterised as a linear function of the jet charge and
jet probability, and is described in more detail in [91]..

The three opposite side taggers described here are not independent, as they can share
tracks, which must be accounted for when using them together. They are combined, to
give a single tagging decision from the opposite side, using a neural network [92] which
exploits correlations between the decisions of these taggers.
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As a cross check for the predicted dilution in the B0
s → J/ψ φ sample, an equivalent

di-muon sample is selected, B+ → J/ψK+, which has comparable kinematics to the
sample of interest, but has the advantage that the flavour of the candidate meson is
known, as it is tagged by the charge of the daughter kaon. This gives a truth value
to compare with the tagging decision, allowing the true dilution to be measured in
the sample. From this sample, a scale factor, SD to apply to the predicted dilution is
calculated. If the predicted dilution is suitable for this sample, the scale factor should
be equal to 1.0 within errors. It is valid to apply the SD measured in B+ → J/ψK+ to
B0
s → J/ψ φ because, as discussed, only the opposite side information is used so the

type of candidate meson is not important. Two scale factors are calculated, for B+ and
B− separately, to account for any charge related asymmetry in the tagging algorithms.
The measured dilution is plotted against the predicted dilution for the b and b̄ events.
To validate the use of the OST developed on l+SVT data for di-muon samples, the
dependence should be consistent with a straight line, with gradient of order unity. The
fitted gradients of these dependences are taken as the scale factors for the dilution.
Figure 3.16 shows the fitted distributions of measured against predicted dilution for the
B+ → J/ψK+sample.
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Figure 3.16: Measured vs. predicted dilution for calibration of OST tagging dilution using
B+ → J/ψK+ data

The measured scale factors are

S+
D = 0.93± 0.09

S−D = 1.12± 0.10. (3.18)

In the same sample, the measured tagging efficiency is 94.3±0.3%, and the mean pre-
dicted dilution is found to be 6.9± 0.1%.

3.7.2 Same side kaon tagger

Same side tagging algorithms use correlations between the flavour of the b quark
making up the candidate meson, and associated tracks. Fragmentation tracks of a
particular type are specific to both the b quark flavour in the B meson, and the other
quark type in the meson which defines the B meson species. In the hadronisation of a
b quark, described in Section 1.3.1, a qq̄ pair is produced from the vacuum, and the q̄
forms a bq̄ meson with the b. The meson formed by the pair-produced q partner of the
q̄, if identified, can be used to tag the quark content of the candidate B meson. For
example, a b̄ hadronising with an s quark to form B0

s is often produced alongside a
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K−, which contains the s̄ partner of the s quark produced as an ss̄ pair.

The SSKT used in this analysis is the tagger which was developed for the CDF
B0
s mixing measurement [42]. It uses a neural network to combine the kaon particle

identification likelihood, with kinematic variables of the kaon, to produce a single tag-
ging decision per event. The NN is trained on realistic MC simulations. The dilution
of the tagger can be parameterised as a function of the NN output.

For the SST, unlike the OST, the behaviour in different B species is expected to
vary, eliminating the possibility of developing and calibrating the SSKT in the same
high statistics light B samples as used for the OST. Previously, the SSKT used in CDF
B physics analyses has been calibrated on MC simulated data, as the fast oscillations of
B0
s mesons complicate the estimation of the production flavour. The predicted dilution

is still calculated in this way, however, for the first time at CDF this tagger has been
calibrated on real B0

s data. This data driven calibration uses the measurement of the
B0
s mixing amplitude to deduce the dilution scale factor. The SSKT calibration is fully

documented in [93], and summarised here.

The scale factor enters the probability function for the measurement of B0
s mixing

as damping on the mixing amplitude, in the term ξAD · cos(∆ms) where ξ is the tag
decision, A is the mixing amplitude and ∆ms is the mixing frequency. The mixing
amplitude is expected to be unity at the true mixing frequency, so the measured value
at this point gives the required scale factor for D. For calibration purposes, this mea-
surement is made using only the SSKT, the published B0

s mixing measurement [42]
used a combination of SST and OST tools.

The data sample used in this calibration is made up of four modes collected using
the displaced vertex trigger. These decays are

• B0
s → D−

s π
+, D−

s → φπ−, φ→ K+K−

• B0
s → D−

s π
+, D−

s → K∗K−, K∗ → K+π−

• B0
s → D−

s π
+, D−

s → π+π+π−,

• B0
s → D−

s π
+π+π−, D−

s → φπ−, φ→ K+K−

where about half of the statistics come from the first channel listed, and the total
number of events in the sample is 12877 ± 113.

If the measured amplitude is ≈ 1 that implies that the dilution and time resolution
are accurately predicted for the tagger. A measured amplitude of < 1 suggests that the
tagger over estimates its accuracy, and > 1 implies an underestimation. Figure 3.17
shows the amplitude scan, which is created by fixing ∆ms to each point along the
x-axis, and fitting the amplitude which is plotted as the y variable. It is essential to
have a good knowledge of the time resolution in this measurement; a phenomenological
function for the resolution is developed in sideband subtracted signal data, and sideband
data separately, then applied in the main fit [93, 94].

The measured amplitude is

A = 0.94± 0.15 (stat.)± 0.13 (syst.) (3.19)
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Figure 3.17: Amplitude scan for ∆ms, for calibration of SSKT.

which is consistent with unity, and acts as the scale factor SD for the tagging dilution.
Another interesting result of this calibration measurement is the mixing frequency

∆ms = 17.79± 0.07 (stat. only) ps−1 (3.20)

which is in good agreement with the CDF published measurement of ∆ms, of ∆ms =
17.77± 0.10 (stat.) ± 0.07 (syst.) [42], increasing confidence in this calibration.

3.8 Monte Carlo simulation

Monte Carlo (MC) simulated data is used for two parts of this analysis, the pure
signal sample for training of the Neural Network, and to model the detector sculpting
on the angular parameters caused by the non-hermiticity of the CDF detector. Realistic
B0
s → J/ψ φ MC is generated using the BGenerator MC generator [95], which contains

full detector simulation, according to a phase space decay model. The MC sample of 100
million events is modelled using input parameters from the first 1 fb−1 of CDF Run-II
data, and as would be expected has some inconsistencies with the current dataset which
can be corrected for. The disagreements are in the pT spectra of the candidate particles,
which can affect the measurement of the transversity angles, an essential component in
this analysis. The original weighting of the MC was trigger related, and as the Tevatron
luminosity has increased during the collection of this data there have been changes in
the trigger scaling which make it necessary to re-do the re-weighting to match the
current data. For training the Neural Network, there is no re-weighting applied to the
MC, but for the detector sculpting modelling an event by event re-weighting is applied.
The re-weighting factors are calculated according to the trigger path (CMU-CMU or
CMU-CMX) of the dimuon pair, and the pT of the muons. By fitting the distribution
of ratios of data to MC for pT of the B0

s meson a pT dependent re-weighting factor is
obtained.
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Comparisons of the pT distributions for sideband subtracted signal events from the
full 5.2 fb−1 data sample and re-weighted MC are shown in Figure 3.18, which demon-
strate good agreement after the corrections have been applied. The MC distributions
have been normalised to the number of events in the data sample.
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Figure 3.18: pT distributions for 100 million re-weighted MC simulated events (red lines) and
6500 signal data events (black points)



Chapter 4

Maximum likelihood fit

This chapter describes the full multivariate likelihood function used to extract the
physical parameters of interest in particular βJ/ψφs and ∆Γ. Correctly normalised
probability density functions for signal and background are constructed in each of
the observed variables. These are combined to make one multivariate probability
density function from which a likelihood is constructed. The likelihood has degen-
erate minima corresponding to symmetries in its parameterisation which must be
interpreted appropriately; this treatment is also explained.

4.1 Maximum likelihood method

An unbinned maximum likelihood fit is used to extract the values of interesting
physics parameters in the decay B0

s → J/ψ φ. This technique maximises a likelihood
with respect to a set of parameters which are assumed to describe the data. A set of
probability density functions (PDFs), P (~x|~µ), gives the probability density of observing
the measured variables for an event, ~xi given a set of unknown parameters, ~µ. The
likelihood function for the dataset of N events is

L(µ) =
N∏
i=1

P (~xi|~µ). (4.1)

The process of maximising the likelihood is carried out by numerically minimising
the negative log of the likelihood (NLL) − logL(~µ) as

logL =
N∑
i=1

logP (~xi|~µ) (4.2)

This minimisation is carried out using the MINUIT minimiser package [96] which is
implemented in the ROOT programming environment [97].

4.2 Components of the likelihood function

The following sections describe each PDF necessary to construct the likelihood func-
tion L. These are:

• The B0
s mass PDFs, Ps(m) and Pb(m)

83
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• The signal decay time and angular PDF, ρ′(θ, φ, ψ, t, Fs, δs)

• The background decay time PDF Pb(t)

• The background angular model PDFs, P (θ)P (ψ)P (φ)

• The lifetime error PDFs Ps(σct) and Pb(σct)

• PDFs for the flavour tagging variables, Ps(ξ),Pb(ξ), Ps(D) and Pb(D), and the
modified signal time and angular dependence including flavour tagging decision
Ps(θ, φ, ψ, t, Fs, δs, ξ|σct)

where the parameters introduced above are defined in the following discussion.

Combining these conditional probabilities, the full likelihood is constructed for all
events as in Equation 4.2. The full likelihood function including flavour tagging, is

L =
∏

[fs · Ps(m) · Ps(ξ) · Ps(θ, φ, ψ, t, FSW , δSW , ξ,D|σct) · Ps(σct) · Ps(D)

+ (1− fs) · Pb(m) · Pb(ξ) · Pb(t|σct) · Pb(θ) · Pb(φ) · Pb(ψ) · Pb(σct) · Pb(D)]

(4.3)

For the case of the fit without flavour tagging, this reduces to

L =
∏

[fs · Ps(m) · Ps(θ, φ, ψ, t, FSW , δSW |σct) · Ps(σct)
+ (1− fs) · Pb(m) · Pb(t|σct) · Pb(θ) · Pb(φ) · Pb(ψ) · Pb(σct)]

(4.4)

where Ps(θ, φ, ψ, t, FSW , δSW ) simply corresponds to the flavour tagged case where the
tag decision ξ = 0.

4.3 B0
s mass PDF

The mass distribution of events is a clear way of separating signal candidates from
background as the B0

s is a well defined resonance. The following subsections describe
the models used to incorporate the signal and background mass distributions into the
likelihood fit.

4.3.1 Signal model, Ps(m)

The signal mass distribution is modelled using a single Gaussian function. To form
the probability density function (PDF), Ps(m), this is smeared with an event-by-event
mass resolution which is scaled using a single scale factor to account for a general
mis-estimation of the mass errors. The signal region is taken to be 5.342 < m(B0

s ) <
5.392.

The PDF is, normalised over the range 5.2 < M(B0
s ) < 5.6:

Ps(m|M,σm) =

1√
2πsmσ

e[−
1
2(

m−M
smσ

)
2
]

1
2
[erf

(
Mmax−M√

2smσ

)
− erf

(
Mmin−M√

2smσ

)
]

(4.5)
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where erf is the error function, Mmax and Mmin are the upper and lower limits of the
mass range, the scale factor on the mass error is sm.

4.3.2 Background model, Pb(m)

The background mass model is a first order polynomial function, which is smeared
with the same error distribution as the signal mass, giving the background mass PDF
Pb(m). TheB0

s mass side band regions, used in some of the background studies discussed
in the following sections, are 5.290 < m(B0

s ) < 5.315 (lower) and 5.418 < m(B0
s ) <

5.442 (upper).

The background mass PDF, normalised in the same mass range as the signal mass
PDF, is

Pb(m) = p1 ·m+
1

Mmax −Mmin

[
1− p1

2
(M2

max −M2
min)

]
(4.6)

where p1 is the slope of the 1st order polynomial.

4.4 PDF in angular and time variables

The angular and time dependent decay functions derived in Chapter 1 describe the
phenomenology of the B0

s → J/ψ φ decay, and the additional contribution from B0
s→

J/ψKK, as would be recorded by a perfect detector. In the likelihood fit, the effects
of the CDF detector on the distributions of variables must be accounted for. Including
the detector effects, the distributions are different than what would be predicted by the
PDFs in various respects:

• The distributions of the transversity angles defined in Chapter 1 are expected to
be flat in cos θ, cosψ and φ, but these distributions undergo some sculpting by
the detector which is discussed in the following subsection.

• The time dependence of the various signal and background components of the
probability density functions are modified by the detector resolution and hence
must be convoluted with an estimated resolution to take this into account.

As a consequence of the detector efficiency effects the corresponding PDFs will have to
be modified, and normalised, taking the derived efficiency into account.

4.4.1 Detector sculpting of transversity angles for signal events,
ρ′(θ, ψ, φ, t, Fs, δs)

Initially, the effect of the detector efficiency will be described for theB0
s → J/ψ φ sig-

nal component (Equation 1.81) only, then the B0
s → J/ψK+K− component will be

added. The equations for the signal B0
s → J/ψ φ probability functions in Chapter 1

were normalised such that
∫∫∫∫ ∑

j=B,B̄

Pj(θ, φ, ψ, t)sinθdθsinψdψ = 1. (4.7)
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Including the efficiency function, ε(θ, φ, ψ) in the time and angular decay PDF, P (θ, φ, ψ, t),
gives a new PDF, P ′(θ, φ, ψ, t)

P ′(θ, φ, ψ, t) =
P (θ, φ, ψ, t)ε(θ, φ, ψ)

N
(4.8)

and the equivalent for P̄ ′, which are both normalised by the factor

N =

∫∫∫∫ ∑

i=B,B̄

Pi(θ, φ, ψ, t)ε(θ, φ, ψ)d(cosψ)d(cos θ)dφdt. (4.9)

In Equation 4.8, the ε(θ, φ, ψ) term in the numerator does not affect the maximum
likelihood, as it does not depend on the fit variables. However, the addition of this
term does affect the normalisation, so it is this which is focused on in the following
discussion.

The detector efficiency function is parameterised using a set of real spherical har-
monics and Legendre polynomials as basis functions, in 3-dimensions, with ranges
0 < ψ < π, 0 < θ < π and 0 < φ < 2π.

ε(ψ, θ, φ) =
∑

lmk

aklmPk(cosψ)Ylm(θ, φ), (4.10)

The normalisation factor, N , can be derived analytically, as shown in Appendix B,
the result being

N =
3

8
√
π

[
4a0

00

3
(|A0|2 + |A‖|2 + |A⊥|2) +

4a2
00

15
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+
3

8
√

5π

[
2a0

20
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15
(|A0|2 − 1

2
|A‖|2 + |A⊥|2)
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− 9

16
√

15π

1√
1 + 4τLτH

((τL−τH) sin 2βs)2

[
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∗
⊥)(

4

3
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4

15
a2

2−1)

]

+
9

16

√
2√

15π

1√
1 + 4τLτH

((τL−τH) sin 2βs)2

[
(A∗0A⊥ + A0A

∗
⊥)(

πa1
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8
− πa3

21

32
+ ...)

]

+
9

8
√

15π

[
2a0

22

3
(−|A0|2 + |A‖|2)− 4a2

22

15
(|A0|2 +

1

2
|A‖|2)

]

+
9

16

√
2√

15π

[
(A∗0A‖ + A0A

∗
‖)(
πa1

2−2

8
− πa3

2−2

32
+ ...)

]
, (4.11)

The detector efficiency enters N through the coefficients aklm, which are fit using realistic
Monte Carlo simulated data. This simulated set of 100 million B0

s → J/ψ φ signal
events is described in Section 3.8. The variables cos θ, φ and cosψ are generated flat
then reconstructed using the same procedure as for real data, thus the distributions
represent the detector efficiencies in each variable. The Monte Carlo distributions of φ,
cos θ and cosψ are filled into a 3-dimensional histogram with 20 bins in each variable,
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these distributions of the transversity angles are shown in Figure 4.1.
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Figure 4.1: Detector sculpting of transversity angles in Monte Carlo simulations. Each is gen-
erated flat in the variable shown, and sculpted by the detector using the same reconstruction
as for data.

To obtain the coefficients aklm, the real spherical harmonics in (θ, φ) are expanded
according to the Laplace series

Ylm(θ, φ) =
∞∑

l=0

l∑
m=0

[Clm cos(mφ) + Slm sin(mφ)]Pm
l (cos θ) (4.12)
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where each term is expanded as a function of a Legendre polynomial used to fit ψ

Slm =
∞∑

k=0

Sklm

√
(2k + 1)

2
Pk(cosψ)

Clm =
∞∑

k=0

Ck
lm

√
(2k + 1)

2
Pk(cosψ) (4.13)

The series in Equation 4.12 can be related to the set of orthonormal basis functions
used in Appendix B for the calculation of the normalisation factor N , by

Ylm = Y m
l (m = 0),

Ylm =
1√
2
(Y m

l + (−1)mY −m
l ) =

√
2Clm cos(mφ)Pm

l (cos θ) m > 0,

Ylm =
1

i
√

2
(Y

|m|
l − (−1)|m|Y −|m|

l ) =
√

2Sl|m| sin(|m|φ)Pm
l (cos θ) m < 0. (4.14)

from which the final coefficients aklm can be taken directly as Ck
lm and Sklm according to

Equation 4.13.

The 3-dimensional fit results are given in Appendix C, Figure 4.2 shows the fit and
residuals for a 2-dimensional fit to the (θ, φ) distribution integrated over cosψ.
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Figure 4.2: Two dimensional fit to (cos θ, φ) transversity angles integrated over cosψ to find
detector efficiency coefficients for normalisation of B0

s → J/ψ φ signal time and angular decay
PDF.

To add in the S-wave KK part, and normalise the angular sculpted modification of
Equations 1.101 and 1.102 requires two additional normalisation factors, one for the S
wave KK term and one for the S-wave - P -wave interference term

N = (1− Fs) ·N + 2Re [Iµ ·N ′] + Fs ·N ′′ (4.15)

Calculating this analytically [98], using the model for the φ meson mass shape described
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in Chapter 1 gives

N ′ =
√

3A∗0(
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√
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4
√

15π
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22 (4.16)

where the ak2,1, a
k
2,−2 were defined in the calculation of N for the B0

s → J/ψ φ only
normalisation.

This shows the full analytic normalisation of the probability function including
detector sculpting of the angular distributions for the full decay including the S-wave
KK component. However, the true mass model used for the φ meson is somewhat more
complex than the Breit-Wigner function used so far. The model was enhanced to better
fit the distribution seen in realistic MC, using an asymmetric relativistic Breit-Wigner
with mass dependent width

BW =
m

mφ

· Γ1 · k
∗(Bs,m, J/ψ)

k∗(Bs,mφ, J/ψ)
· 1

(m2
φ −m2)2 +m2

φ · Γ2
tot

. (4.17)

where the particle momentum is given by the k∗ terms, and its mass is m in the B0
s rest

frame. This assumes a two body decay, where the other daughter particle is the J/ψ,
and the total decay width Γtot is

Γtot = Γ1 + Γ2 + Γ3, (4.18)

where Γ1,2,3 are the partial decay widths for the decays φ → K+K− (48.8 ± 0.5%),
φ→ K0

LK
0
S (34.2± 0.4%) and φ→ ρπ+π+π−π0 (15.32± 0.32%) [10] respectively. The

agreement between this function and the φ mass shape in MC is shown in Figure 4.3.

With this improved description of the φ mass incorporated into the probability for
the B0

s → J/ψ φ plus B0
s → J/ψKK decay, the normalisation factors N ′ and N ′′ are

calculated numerically during the fit. The improvement in accuracy of the model is
considered worth the slight increase in computing time.

The normalised full PDFs for the time and angular dependence, including angular
sculpting of the detector, and decays to both φ and KK(f0) final states, are

ρ′(θ, φ, ψ, t, Fs, δs) =
1

N ′′ρ(θ, φ, ψ, t, Fs, δs)ε(θ, φ, ψ) (4.19)

and

ρ̄′(θ, φ, ψ, t, Fs, δs) =
1

N ′′ ρ̄(θ, φ, ψ, t, Fs, δs)ε(θ, φ, ψ) (4.20)
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Figure 4.3: Agreement between the asymmetric, mass dependent Breit Wigner parameterisa-
tion and realistic Monte Carlo simulation

4.4.2 Detector resolution smearing of signal P (σct)

The detector resolution was discussed in Chapter 1, where the time and angular
dependent probabilities were developed. These were constructed such that smearing
could be simply applied to the separated exponential functions. The exponential and
sin(exponential) functions are smeared with two separate Gaussian functions, according
to the event-by-event error σt, multiplied by scale factors which are floated in the fit.
The scale factors for the two Gaussians are different, and they are included to account
for an overall mis-estimation of the decay time resolutions.

For each of the signal lifetime components, there is a PDF of the form

P ′s(ct, σct|cτ, sct1,2) = P (ct|cτ)⊗ (fsct1G1(ct, σct|sct1) + (1− fsct1)G2(ct, σct|sct2))

=
1
cτ
e−

ct
cτ ⊗

(
fsct1

1√
2πS1σct

e
− c2t2

2s2ct1σ
2
ct + (1− fsct1)

1√
2πsct2σct

e
− c2t2

2s2ct2σ
2
ct

)

(4.21)

where sct1 and sct2 are the σct scale factors, and f1 is the fraction of the first smearing
Gaussian.

When using event-by-event errors, which are not distributed identically for the sig-
nal and background events, it is necessary to include a PDF for the separate error
distributions [99]. The error distributions differ for signal and background because
combinatorial background events have a cτ which is fitted from a random combination
of four tracks and therefore tend to have a worse resolution σt than the better fitted
signal events.

The decay time error PDF Ps(σct) is constructed from Gamma functions

Γ(x) ≡ xae−x/b

ba+1Γ(a+ 1)
(4.22)
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where a and b define the mean and width of the distribution. Each function has different
values of a and b, and these values are found in a separate lifetime only fit before running
the full angular analysis. The projections of this preparatory fit on data are shown in
Figure 4.4
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Figure 4.4: Fit projection of the B0
s proper decay length error distributions for signal (left)

and sideband (right) regions

4.4.3 Background lifetime and angular PDFs, Pb(t) and
Pb(θ), Pb(φ), Pb(ψ)

For the background, the angular distributions are not used in separating lifetime
components; they will be presented individually in this subsection.

The background proper decay time function, Pb(t) is parameterised as a prompt
peak modelled by a Gaussian distribution, two positive exponentials and a negative
exponential. This function is smeared with the same resolution function as the signal
decay time dependence. The components of this parameterisation are motivated as
follows: the prompt peak models the majority of the combinatorial background events,
which are expected to have no significant lifetime, the positive exponentials account
for a small fraction of longer lived background such as real kaons, and the negative
exponential is to take into account events where the vertex reconstruction of the proper
decay length results in a τ below zero. A negative τ measurement can occur because
in the vertex constrained fit to calculate cτ , there is no guarantee that Lxy and pT
will be collinear, therefore Equation 3.2 may not be positive. Equation 4.23 shows the
mathematical form of this distribution.

Pb(t, σct) =
{
fg + (1− fg)

(
f++

1
λ++

e
− t
λ++ + (1− f++)

(
f−

1
λ−

e
t
λ− + (1− f−)

1
λ+

e
− t
λ+

))}

⊗ {fsct1G1(σct1) + (1− fsct1)G2(σct2)}
(4.23)

The background lifetime resolution function Pb(σct) is handled in the same way as
described for the signal distribution, using another set of Gamma functions. The fitted
distribution of background σct is shown in Figure 4.4.

There are no predictions for the distribution of the background transversity angles,
the following functions are found to describe the data
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f(cos θ) =
a0 − a1cos

2(θ)

2a0 − 2a1/3

f(φ) =
1 + b1cos(2φ+ b0)

2π

f(cosψ) =
c0 + c1cos

2(θ)

2c0 + 2c1/3
. (4.24)

They are initially fitted on data from only the B0
s mass sidebands, to find sensible

starting values of a0,1,2, b0,1,2 and c0,1,2, then allowed to float freely in the full minimi-
sation. The preparatory fits to the sideband data are shown in Figure 4.5 projected on
data points.

Figure 4.5: Distribution of transversity angles for background events, with fit projections from
initial fit to sideband only data

The PDFs for the background angles are treated as factorisable, as they have mini-
mal correlations between them thus they can be modelled separately. The assumption
of factorisability is checked in Section 6.2.6, where it is determined that the actual cor-
relations in the angles lead to a small systematic effect. The small correlations can be
seen in Figure 6.2. After normalising the functions in Equation 4.24 the PDF for the
background angular distributions is P (θ, φ, ψ) = P (θ) · P (φ) · P (ψ).

4.5 Flavour tagging PDFs

Flavour tagging was introduced in Section 1.5.1; details of the opposite side (OST)
and same side (SST) tagging algorithms and their calibrations were given in Section 3.7.
Now, flavour tagging can be incorporated into the probability function for the signal
and background components.

4.5.1 Combining tagging algorithms in the signal decay PDF,
Ps(θ, φ, ψ, t, Fs, δs, ξ,D), Ps(ξ), Ps(D)

For each tagger, three additional variables are brought into the likelihood: the tag
decision, ξ, the tagging dilutions D, and the dilution scale factor, SD. As discussed
previously (Section 3.7), the tag decision ξ can be +1 (B0

s ), -1 (B̄0
s ) or 0 (no decision)

and the predicted dilution D gives a weighting to each tagged event, signifying the
quality of the tagging. The dilution is scaled by SD, a scale factor determined by
calibrating the taggers on suitable data samples. The scale factors are allowed to float
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within Gaussian constraints to their errors in the main B0
s → J/ψ φ fit, to account for

any variations in performance between the calibration and analysis samples.

Analogous to the inclusion of the proper decay length error, σcτ , it is necessary to
include a probability density function, P (D), for the predicted tagging dilution in the
full likelihood. This probability density function is taken from a separate histogram
for signal and background. The signal histogram is filled with background-subtracted
signal region data, the background dilution histograms are taken from sideband region
data. These distributions are shown in Figure 4.6.
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Figure 4.6: Normalised predicted tagging dilutions for the OST (top) and SSKT (bottom)

The probability density function for the tag decision, P (ξ) must take into account
the efficiency of the tagging algorithm to produce a tag decision. If the tagging efficiency
for a single tagger is ε, then P (ξ) will be

P (ξ) = (1− ε) · δ(ξ − 0) + ε · δ(|ξ| − 1) (4.25)

With two independent flavour taggers, with ε1 and ε2 as tagging efficiencies, the prob-
ability can be written as

P (ξ) ≡ P (ξ1)P (ξ2) =

(
1−

2∑
j=1

εj

)
· δ

(
2∑
j=1

ξj − 0

)
+

2∑
j=1

δ (|ξj| − 1) (4.26)

The modified decay probability for the time and angular dependence can now be
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constructed to include the tag decision variables; it is presented here initially for a single
tagger for clarity, then extended to the case with two flavour taggers. The lifetime
and angular dependent probability function was modified in Section 4.4 to incorporate
detector sculpting of the angular distributions, giving ρ′(θ, φ, ψ, t, Fs, δs).

Using a single tagger, this becomes

T (θ, φ, ψ, t, Fs, δs, D, ξ) =
1− sD

2
ρ′(θ, φ, ψ, t, Fs, δs) +

1 + sD

2
ρ̄′(θ, φ, ψ, t, Fs, δs) for ξ = −1

T (θ, φ, ψ, t, Fs, δs, D, ξ) = ρ′(θ, φ, ψ, t, Fs, δs) + ρ̄′(θ, φ, ψ, t, Fs, δs) for ξ = 0

T (θ, φ, ψ, t, Fs, δs, D, ξ) =
1 + sD

2
ρ′(θ, φ, ψ, t, Fs, δs) +

1− sD

2
ρ̄′(θ, φ, ψ, t, Fs, δs) for ξ = 1

(4.27)

This notation can be made more compact by the inclusion of the decision variable as a
multiplication factor. For the inclusion of tagging decisions from two separate flavour
taggers, the probability can be written in this compact form as

T (θ, φ, ψ, t, FSW , δSW , D1, D2, ξ1, ξ2) =
1 + ξ1s1D1

1 + |ξ1|
1 + ξ2s2D2

1 + |ξ2| ρ′(θ, φ, ψ, t)

+
1− ξ1s1D1

1 + |ξ1|
1− ξ2s2D2

1 + |ξ2| ρ̄′(θ, φ, ψ, t)

(4.28)

However one of the taggers, the OST, has two separate dilution scale factors, for mesons
tagged as containing b and b̄, notated as S− and S+. This modifies the probability to

T (θ, φ, ψ, t, FSW , δSW , D1, D2, ξ1, ξ2) =
1 + ξ1s

+
1 D1

1 + |ξ1|
1 + ξ2s2D2

1 + |ξ2| ρ′(θ, φ, ψ, t)

+
1− ξ1s

−
1 D1

1 + |ξ1|
1− ξ2s2D2

1 + |ξ2| ρ̄′(θ, φ, ψ, t)

(4.29)

if the OST is taken to be tagger 1.

The final decay PDF including the ct resolution, σct, as well as the detector angular
efficiencies and combined flavour tagging is

Ps(θ, φ, ψ, t, FSW , δSW , ξ,D|σct) · Ps(ξ) · Ps(D) · Ps(σct) (4.30)

In this analysis, some results are produced using a likelihood fitter without flavour
tagging (the untagged fit), as a cross check that the tagging does not introduce a bias
in the measured values. In this fit configuration, the likelihood can be seen to reduce
to the ξ = 0 case.

4.5.2 PDFs for background flavour tagging Pb(ξ) and Pb(D)

Tagging information for background events is essentially without physical meaning,
as they are mostly combinations of unrelated tracks which pass the signal selection
criteria. Despite this, the effect of flavour tagging has to be accounted for in the
likelihood construction for background events. The background dilution PDF Pb(D) is,
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like the signal equivalent, taken from the normalised histogram of tagging dilution for
background events (Figure 4.6).

The background tag decision PDF Pb(ξ) contains a term to correct for any charge
asymmetry in the taggers, a disparity in the fraction of background events tagged as
B0
s over B̄0

s . This term is notated as fb+, for the fraction of background events which are
tagged as containing a b̄ quark (positively charged) and is floated in the full likelihood
fit. This gives a PDF of the form

Pb(ξ) = δ(ξ − 0) · 1 + δ(ξ − 1) · fb+ + δ(ξ + 1) · (1− fb+) (4.31)

4.6 Symmetries in the likelihood function

Considering first the decay function for B0
s → J/ψ φ, ignoring the S-wave KK[f0]

component, the likelihood has symmetry properties under certain transformations.
These can be seen clearly from the explicit form of the PDF of the decay. From Equa-
tion 1.86, the components for A+ and A− can be written out using Equations 1.84 and
1.85

|A+(0)× n̂|2 = |A0(0)|2 cos2 ψ(cos2 θ + sin2 θ sin2 φ)

+
1
2
|A‖(0)|2 sin2 ψ(cos2 θ + sin2 θ cos2 φ)

+
1

2
√

2
|A0(0)||A‖(0)| cos(φ‖) sin 2ψ sin2 θ sin 2φ) (4.32)

and

|A−(0)× n̂|2 =
1

2
|A⊥(0)|2 sin2 ψ sin2 θ (4.33)

where by convention, φ‖ = arg(A‖), φ⊥ = arg(A⊥) and A0 is real. The B0
s -B̄

0
s interfer-

ence term becomes

(A+ × n̂) · (A∗
− × n̂) =

i

4
|A‖(0)||A⊥(0)|ei(φ‖−φ⊥) sin2 ψ sin 2θ sinφ

+
i

4
√

2
|A0(0)||A⊥(0)|e−iφ⊥ sin 2ψ sin 2θ cosφ (4.34)

and analogously for the B̄0
s . At this stage it is useful to use some trigonometric relations

to simplify the equations. The angular functions in Eqn. 4.32 can be re-written as

cos2 θ + sin2 θ sin2 φ = 1− sin2 θ + sin2 θ(1− cos2 φ)

= 1− sin2 θ cos2 φ, (4.35)

cos2 θ + sin2 θ cos2 φ = 1− sin2 θ + sin2 θ(1− sin2 φ)

= 1− sin2 θ sin2 φ. (4.36)
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Defining a set of functions

g1(~ω) = cos2 ψ(1− sin2 θ cos2 φ)

g2(~ω) = sin2 ψ(1− sin2 θ sin2 φ)

g3(~ω) = sin2 ψ sin2 θ

g4(~ω) = sin 2ψ sin2 θ sin 2φ

g5(~ω) = sin2 ψ sin 2θ sinφ

g6(~ω) = sin 2ψ sin 2θ cosφ,

where ~ω ≡ (θ, φ, ψ), enables the re-writing of 1.86

P (θ, φ, ψ, t) =
9

16π
{|A0(0)|2|f+(t)|2g1(~ω) +

1

2
|A‖(0)|2|f+(t)|2g2(~ω) +

1

2
|A⊥(0)|2|f−(t)|2g3(~ω)

− 1

2
√

2
|A0(0)||A‖(0)| cos(φ‖)|f+(t)|2g4(~ω)

− <(
i

2
|A‖(0)||A⊥(0)|ei(φ‖−φ⊥)f+(t)f ∗−(t))g5(~ω)

+ <(
i

2
√

2
|A0(0)||A⊥(0)|eiφ⊥f+(t)f ∗−(t))g6(~ω)}. (4.37)

To take the real part of the last two terms in Equation 4.37, the explicit time dependence
of the interference terms must be written out, using Equation 1.88.

P (θ, φ, ψ, t) =
9

32π
{2|A0(0)|2|f+(t)|2g1(~ω) + |A‖(0)|2|f+(t)|2g2(~ω) + |A⊥(0)|2|f−(t)|2g3(~ω)

− 1√
2
|A0(0)||A‖(0)| cos(φ‖)|f+(t)|2g4(~ω)

− 1

N
|A‖(0)||A⊥(0)|[sin(φ‖ − φ⊥)e−Γt cos(∆mt)

+ cos(φ‖ − φ⊥)(cos(2βs)e
−Γt sin(∆mt) + sin(2βs)(e

−ΓLt − e−ΓH t)/2)]g5(~ω)

+
1

N
√

2
|A0(0)||A⊥(0)|[sin(φ⊥)e−Γt cos(∆mt)

− cos(φ⊥)(cos(2βs)e
−Γt sin(∆mt) + sin(2βs)(e

−ΓLt − e−ΓH t)/2)]g6(~ω),

(4.38)

where N =
√

[(τL − τH) sin 2βs]2 + 4τLτH .

With these explicit definitions in hand, the invariant behaviour of the functions can
be observed. Transforming the vector A(t) (Equation 1.83) into its complex conjugate
is an invariant operation on the PDF. This can be shown by looking at the simultaneous
transformation of the dependent parameters required to carry out this operation:

• βs → π/2− βs

• ∆Γ → −∆Γ

• φ⊥ → π − φ⊥

• φ‖ → 2π − φ‖.
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These simultaneous transformations perform the complex conjugation as follows

• The terms in square brackets in Equation 1.80 are transformed into their complex
conjugates, as the terms E± → E∗

± (where E± are defined in Equation 1.68), and
e−2iβs → −e+2iβs and vice versa.

• The denominator in Equation 1.80 is invariant under the simultaneous transfor-
mation of the parameters described, as both cos 2βs and τL − τH change sign, so
their product remains the same, therefore the original value is equal to its complex
conjugate.

• The amplitudes A‖ → A∗‖ and iA⊥ → −iA∗⊥ by the definition of the phases φ⊥
and φ‖, and A0 is equal to its own complex conjugate as it is a real value.

Thus the combined transformation has converted A(t) to A∗(t). The consequence of
this invariance, is that there are two minima of the likelihood function which cannot be
distinguished between.

In the case of the fit without flavour tagging information, there is an additional
irresolvable symmetry under the simultaneous transformation

• β
J/ψφ
s → β

J/ψφ
s − π/2

• ∆Γs → −∆Γs

The addition of flavour tagging removes this symmetry, as the ability to follow sepa-
rately the decay of B0

s and B̄0
s introduces sensitivity to the sign of the parameters

transformed above. This effect can be seen in the difference between Equations 1.75
and 1.76

Now returning to the probability function which takes into account B0
s → J/ψKK

decays, it can be observed that the addition of this component to the B0
s → J/ψ φ signal

could break the symmetry described for the fit including flavour tagging information.
First, it is necessary to find the transformation which performs the complex conjugation
of the combined S- and P -wave amplitudes which appear in φ meson mass dependent
Equation 1.92 in the form of

√
1− FSWh(µ)A(t) + eiδs

√
FSW

g(µ)√
3

B(t). (4.39)

From the form of h(µ), such a complex conjugation would require the transformation of
the φ meson decay width, Γφ, to −Γφ, which would be unphysical. This situation can be
avoided by instead transforming Equation 4.39 to its negative complex conjugate, which
is carried out by in addition to performing the previously described transformation of
the terms in βs,∆Γ, φ‖, and φ⊥, transforming

• δSW → π − δSW

• (µ− µφ) → −(µ− µφ).
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In this transformation, the last part flips from one side of the φ meson mass peak to
a point symmetrically on the opposite side. Considering this fact in terms of the φ
meson mass integrated function, which is the case used in the main likelihood fit in this
analysis, the final combined transformation which gives a symmetry in the likelihood is
as described above, with the µ terms omitted.

{βs,∆Γ, φ⊥, φ‖, δSW} ⇒ {π/2− βs,−∆Γ, π − φ⊥, 2π − φ‖, π − δSW} (4.40)

However, this symmetry only holds as long as the φ mass distribution is symmetric,
and the interval of integration is symmetric about the central value of the φ meson
mass. As was explained in Section 4.4.1 of this chapter, the φ mass distribution is in
fact an asymmetric function, so this symmetry is broken. In Chapter 7 it will be shown
that this effect is actually rather small, and not significant enough to isolate a single
solution to the likelihood function with this level of statistics.

4.7 Conversion from αCPOdd and α‖ to

|A0(0)|2 and |A‖(0)|2
In the likelihood fit, only two of the three angular amplitude parameters are de-

termined, the third is calculated as |A0|2 + |A‖|2 + |A⊥|2 = 1. The parameters used
in the minimisation are αCPOdd ≡ |A⊥|2 and α‖ ≡ |A‖|2/(1 − |A0|2). This change of
variables is imposed in order to prevent unphysical values for the angular amplitudes
being found by the fitter. By using αparallel and αCPOdd, the fit is prevented from finding
|A0|2 + |A‖|2 > 1 without having to set any artificial constraints on the amplitudes.

In order to quote values of the angular amplitudes which can be compared with
existing measurements, it is necessary to follow the convention of presenting the initial
amplitudes |A{0,‖,⊥}(0)|2. These can be obtained from the fitted parameters, which give
the integrated rates to each polarisation state, as follows:

|A0(0)|2 =
(1− α‖)(1− αCPOdd)

1 + (y − 1)αCPOdd

|A⊥(0)|2 =
αCPOdd

1 + (y − 1)αCPOdd

|A‖(0)|2 =
α‖(1− αCPOdd)

1 + (y − 1)αCPOdd

(4.41)

where z ≡ cos(2βs)∆Γ/(2Γ) and y ≡ (1 − z)/(1 + z). As βs is fixed to 0.0 for the
measurement of these values, z reduces to z = ∆Γ/(2Γ). It is only necessary to quote
final values for two of the three amplitudes because of the |A0|2 + |A‖|2 + |A⊥|2 = 1
relationship.

To properly treat the errors for the angular amplitudes, it is necessary to propagate
the statistical and systematic errors of the measured quantities taking into account
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correlations between the parameters [100], as shown in Equation 4.42.

σ2
|A0(0)|2 =

4∑
i=1

(
∂|A0(0)|2
∂Pi

)
σ2
Pi

+
4∑
i=1

4∑
j=1

∂|A0(0)|2
∂Pi

∂|A0(0)|2
∂Pj

ρ(Pi, Pj)

σ2
|A‖(0)|2 =

4∑
i=1

(
∂|A‖(0)|2
∂Pi

)
σ2
Pi

+
4∑
i=1

4∑
j=1

∂|A‖(0)|2
∂Pi

∂|A‖(0)|2
∂Pj

ρ(Pi, Pj) (4.42)

where Pi are the dependent parameters α‖, αCPOdd, cτs and ∆Γs, ρ is the correlation
matrix for the statistical errors and σPi are the errors for each parameter in the relation.
The full error propagation relations, and error matrix values are given in Appendix D.



Chapter 5

Fitter validation

This chapter presents results from fits using pseudo experiments to check the like-
lihood and evaluate the behaviour of the fit parameters, especially to assess biases
in parameters of interest. A full validation of the likelihood has already been per-
formed in [101] but special attention is paid here to testing the significantly modified
components such as the inclusion of the S-wave KK component in the likelihood.

5.1 Validation of the fitter

The aim of this section is to establish whether biases are present in the fitted values
across a range of physically possible situations. A technique called pull studies can be
used to check the behaviour of a fitter by looking at the distribution of normalised devi-
ations (pulls) in pseudo experiments from the generated value of each parameter [102].
For a variable which has a Gaussian distribution with mean µ and width σ, the pull

g =
x− µ

σ
(5.1)

is expected to be Gaussian by definition. However, the central limit theorem shows that
this principle can in fact be extended to non-Gaussian parameters such as a lifetime
which would be expected to have a Gaussian distribution of measured values if a suitably
large number of pseudo experiments were carried out. In this case, the pull

g =
θm − θg
σm

(5.2)

is expected to be a Gaussian of mean=0 and σ=1, where θm and θg are the measured
and generated (true) values of the parameter being studied, and σm is the error on
the measurement. A deviation from the Gaussian distribution in this case can indicate
either a bias in the fitting technique, or a mis-calculation of the errors which enter in
the denominator.

Pseudo experiments are necessary for the analysis of biases in the analysis, because
in data the true value is not known. In the study of B0

s → J/ψ φ, a fast Monte
Carlo simulation has been developed which allows the generation of large numbers of
events for different values of the physics parameters and limited detector effects. In this
simulation, the following components are generated:

• Mass and mass error

100
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Following the mass PDF described in Section 4.3, the signal mass is generated
according to a Gaussian smeared by event-by-event mass errors as in Equation 4.5
where the parameters are taken from data. If background is included, the back-
ground mass is generated according to a first order polynomial distribution as in
Equation 4.6 with parameters and error distribution from the relevant data fit.

• Lifetime and distribution of decay angles
The B0

s and B̄0
s proper decay time and angular amplitudes are generated accord-

ing to the PDFs developed in Chapter 1. When background is included, the
combinatorial background lifetimes are constructed using the three exponential
plus one Gaussian model described in Section 4.4.3, given by Equation 4.23. The
background distributions for the transversity angles are generated according to
Equation 4.24, described in the same section.

• Detector acceptance
The PDFs for the lifetime and angular distribution are multiplied by acceptance
(efficiency) functions fitted from realistic Monte Carlo which uses full detector
simulation, as explained in Section 4.4.1.

• Detector resolution
The lifetime for each generated event is smeared with event by event errors taken
from data distributions to simulate the decay time resolution of the detector,
this effect is shown in Equation 4.21 for signal and included in Equation 4.23 for
background events.

• Flavour tagging
The flavour tagging efficiencies, decisions and dilution are generated using dis-
tributions measured in data for each tagger, according to the PDFs laid out in
Section 4.5.1 for signal events and Section 4.5.2 for background.

• B0
s → J/ψKK component

A fraction of the signal component is generated with B0
s → J/ψKK (non-

resonant) instead of B0
s → J/ψ φ. The fraction of this component, and its phase

relative to the P -wave φ can be varied to study the effects of different values for
these parameters.

The fast Monte Carlo simulations described here are used extensively throughout
the fitter validation process, and in estimating systematic and statistical effects in
Chapters 6 and 7. The following sections describe the use of pull studies to validate
the likelihood fitter for various configurations of the fit.

5.2 Checks of the S-wave KK parameters

The improved likelihood used in this analysis is based on a fitter used in previous
measurements which was extensively validated in [101] and shown to be unbiased in
the limit of very high statistics. After the modifications to improve the fitter, such as
the inclusion of B0

s → J/ψKK component, the focus has been on checking the new
functionality rather than a full re-validation with high statistics tests.

The parameters of particular interest in this section, the first part of the validation,
are the S-wave fraction of the B0

s → J/ψ φ signal, and relative phase, ASW and δSW .
For the high statistics studies, 16 ensembles of 500 pseudo experiments, each with
100000 signal events (with no background), were generated using the fast Monte Carlo
generator described in the previous section. These pseudo experiments were generated
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with input values for all parameters taken from the data fit values (Table 7.1) except

for β
J/ψφ
s and ∆Γ which are generated at their SM predicted values, and the S-

wave KK component fraction and relative phase, which are varied for each ensemble
of experiments. Sets of pseudo experiments are generated at with the S-wave fraction,
ASW , at 5%, 10%, 25% and 50%, with δSW generated at 0, π/4, π/2 and 3π/4.

The pulls for the S-wave fraction, shown in Tables 5.1 and 5.2 are not badly shifted
from zero mean, and of approximately unit width, for all generated values of the S-
wave fraction and phase. For the S-wave relative phase, there are some statistically
significant biases present in Tables 5.3 and 5.4 of 1-10σ significance. In terms of
absolute magnitude these are small shifts, and this parameter is not included in the set
of best fit values quoted as final results because there is not sufficient sensitivity to it,
as shown in Figure 7.1. However, it is important to investigate these biases in case they
indicate a problem with the fitter for other parameters.

Mean 5% 10% 25% 50%
0 0.22± 0.06 0.13± 0.05 −0.02± 0.04 −0.05± 0.05
π/4 −0.07± 0.04 −0.09± 0.06 −0.02± 0.05 −0.06± 0.05
π/2 −0.07± 0.04 −0.08± 0.05 −0.08± 0.04 −0.10± 0.05
3π/4 −0.001± 0.05 −0.07± 0.04 −0.15± 0.05 −0.09± 0.05

Table 5.1: Mean of the S-wave fraction pull from high statistics pseudo experiments with
ASW and δSW generated at the values in each row and column.

σ 5% 10% 25% 50%
0 0.83± 0.05 0.87± 0.04 0.95± 0.03 0.99± 0.04
π/4 0.91± 0.03 0.93± 0.06 0.97± 0.04 1.02± 0.04
π/2 0.87± 0.03 0.91± 0.04 0.95± 0.03 0.99± 0.04
3π/4 0.93± 0.04 0.89± 0.03 0.95± 0.04 1.01± 0.04

Table 5.2: Width of the S-wave fraction pull from high statistics pseudo experiments with
ASW and δSW generated at the values in each row and column.

Mean 5% 10% 25% 50%
0 0.10± 0.06 0.18± 0.05 0.42± 0.05 −0.47± 0.04
π/4 0.14± 0.10 0.24± 0.05 0.25± 0.04 0.27± 0.04
π/2 −0.06± 0.6 0.04± 0.04 −0.03± 0.04 −0.05± 0.05
3π/4 −0.19± 0.11 −0.21± 0.05 −0.31± 0.04 −0.28± 0.04

Table 5.3: Mean of the S-wave relative phase pull from high statistics pseudo experiments
with ASW and δSW generated at the values in each row and column.

The larger biases seen in the S-wave fraction, ASW , for low input values are thought
to be due to the truncated nature of its likelihood profile, which is cut off at zero,
and can be seen in Figure 7.1. The biased behaviour of the relative phase δSW can
not be understood from the studies shown so far, so further investigation has been
carried out. From Table 5.3 the case with the worst pull, ASW = 0.5, δSW = 0, was
taken. For these input values, ∼500 pseudo experiments with 1000000 signal events
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σ 5% 10% 25% 50%
0 0.87± 0.06 0.91± 0.04 1.01± 0.04 0.94± 0.03
π/4 0.96± 0.09 0.86± 0.04 0.92± 0.03 0.93± 0.04
π/2 0.80± 0.05 0.87± 0.03 0.92± 0.04 0.97± 0.04
3π/4 0.98± 0.11 0.89± 0.04 0.86± 0.03 0.82± 0.03

Table 5.4: Width of the S-wave relative phase pull from high statistics pseudo experiments
with ASW and δSW generated at the values in each row and column.

were generated. Figures 5.1-5.2 show that the main parameters of interest, β
J/ψφ
s , c/τs

and ∆Γs exhibit no biases despite the biased pulls for the phases. The parameters which
have a moderate biases of about 0.3 ± 0.05, αCPodd and α‖, are closely related to the
phases, and examining the residual shifts for these parameters shows that the actual
size of the shift is very small, of order 0.001. For the phases themselves, φ‖, φ⊥ and δSW
all have significantly biased pulls in this test, of around 2.0 ± 0.05. The non-Gaussian
behaviour of φ‖ is understood as being due to the proximity of a symmetry point to
the generated value (details are given in Section 5.3.1) but this does not fully explain
the bias exhibited here.
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Figure 5.1: Pull distributions and residuals for ∆Γ, cτ and the transversity amplitudes from
high statistics tests with ASW=0.5, δSW = 0.0

To further investigate this problem, two additional sets of pseudo experiments were
generated and fitted. As it is understood that φ‖ is not fitted well close to its reflection
point at π (see section 5.3.1), these sets were generated with values of φ‖ = 1.5 and
φ‖ = 1.0, rather than the fitted value from data of φ‖ = 3.08, to check whether the
biases in φ⊥ and δSW could be explained by the behaviour of φ‖. The results of these
experiments are shown in Figures 5.4-5.8. These show a significant improvement over
those generated with φ‖ close to π, but the biases are not removed entirely.
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Figure 5.2: Pull distributions and residuals for φ‖, φ⊥ and β
J/ψφ
s from high statistics tests

with ASW=0.5, δSW = 0.0
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Figure 5.3: Pull distributions and residuals for S-wave fraction and relative phase from high
statistics tests with input ASW=0.5, δSW = 0.0
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Figure 5.4: Pull distributions and residuals for ∆Γ, cτ and the transversity amplitudes from
high statistics tests with ASW=0.5, δSW = 0.0 and the input value of φ‖ changed to 1.5 to
avoid its reflection point at π.
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Figure 5.5: Pull distributions and residuals for φ‖, φ⊥ and β
J/ψφ
s from high statistics tests

with ASW=0.5, δSW = 0.0 and the input value of φ‖ changed to 1.5 to avoid its reflection
point at π.
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Figure 5.6: Pull distributions and residuals for S-wave fraction and relative phase from high
statistics tests with input ASW=0.5, δSW = 0.0 and the input value of φ‖ changed to 1.5 to
avoid its reflection point at π.
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Figure 5.7: Pull distributions and residuals for ∆Γ, cτ and the transversity amplitudes from
high statistics tests with ASW=0.5, δSW = 0.0 and the input value of φ‖ changed to 1.0 to
avoid its reflection point at π.
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Figure 5.8: Pull distributions and residuals for φ‖, φ⊥ and β
J/ψφ
s from high statistics tests

with ASW=0.5, δSW = 0.0 and the input value of φ‖ changed to 1.0 to avoid its reflection
point at π
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Figure 5.9: Pull distributions and residuals for S-wave fraction and relative phase from high
statistics tests with input ASW=0.5, δSW = 0.0 and the input value of φ‖ changed to 1.0 to
avoid its reflection point at π

Two cross checks have been carried out to complement the pull studies described
so far in this section. To check the correlation observed between φ⊥ and δSW , the
correlation matrix was investigated. Appendix E gives the full correlation matrix for
the fit to a signal only pseudo experiment with 1000000 events, and for the full fit
to data. These confirm the strong correlation between δSW and the phases φ‖ and
φ⊥, which both exhibit bad pulls for some generated values when there is a large S-
wave component, but not between δSW and the main parameters of interest. Finally,
likelihood scans are presented for the S-wave parameters and the main parameters of
interest for the fit to data (Figure 5.10) and for one example high statistics pseudo
experiment with 1000000 signal events (Figure 5.11). These highlight the behaviour
of φ‖ close to its reflection point, and demonstrate the non-parabolic errors of δSW .
The asymmetry of the likelihood scan for δSW is particularly evident in Figure 5.11.
Perhaps the most revealing of these plots is the scan for φ⊥ in the high statistics study
in Figure 5.11, which shows distinctly non-parabolic errors due to a reflection about π
similar to that observed for φ‖. In the data scans (Figure 5.10), this behaviour for φ⊥ is
not evident, but in the large ASW , high statistics sample this explains the biased pull
for this parameter seen in Figure 5.2.

The conclusion of this high statistics fitter validation study is that despite persistent
biases in the phases φ‖, φ⊥ and δSW for certain values of the S-wave fraction and
relative phase, the main parameters of interest are unbiased. The biases in the phases
are likely to be due to the non-parabolic nature of the likelihood distributions for these
parameters shown in figure 5.11, and would be expected to disappear in the case of
infinite statistics. Comprehensive studies have confirmed that these do not affect β

J/ψφ
s ,

∆Γ or the B0
s lifetime, and the measurement of the S-wave fraction, ASW , is largely

unbiased.
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Figure 5.10: Likelihood scans for main parameters of interest from fit to data sample, with
full flavour tagging
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Figure 5.11: Likelihood scans for main parameters of interest from fit to 1000000 signal only

simulated events generated with ASW = 0.5, δSW = 0.0, βJ/ψφs and ∆Γ at their SM values
and all other parameters from a fit to data.
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5.3 Realistic sample tests of the fitter

The pull study technique described at the start of this chapter is used to assess the
biases for the parameters of interest in several configurations of the fit with sample sizes
generated to match the current data sample available:

• the full fit with flavour tagging and β
J/ψφ
s floating,

• the fit with flavour tagging but with β
J/ψφ
s fixed to 0.0 (∼SM value),

• the fit with β
J/ψφ
s =0.0 and no flavour tagging.

Previous B0
s → J/ψ φ analyses at CDF have presented best fit values for physics

parameters of interest using a non-flavour tagged fit [7, 4], because of persistent biases
in the likelihood fitter at low statistics when flavour tagging was included. With the
extended dataset of L = 5.2 fb−1 the feasibility of publishing values for the flavour
tagged likelihood fit has been studied. Ideally, fit values for all physics parameters
including β

J/ψφ
s would be presented using the full flavour tagged fit with β

J/ψφ
s floating,

but in earlier iterations this configuration of the fitter showed bad biases in realistic data
sample sizes [103]. This has been checked for the new fitter with the present, larger data
sample, but non-negligible biases in several key variables remain present. These studies
are discussed and shown in Section 5.3.2. Using flavour tagged fit with β

J/ψφ
s fixed to

0.0 is a good compromise, as it exhibits unbiased pulls (shown in Section 5.3.1) and

still provides a good cross check of the main fitter used in the full β
J/ψφ
s measurement

as explained in Chapter 6.

Generally, for the main parameters of interest the input values for generation of
pseudo experiments are randomised across their expected ranges, these parameters and
their ranges are shown in Table 5.5. The exceptions are φ‖ and φ⊥; φ‖ exhibits worse
behaviour in the fit for values close to π (see Figure 5.14 and discussion in following
section), which is a point of reflection for this parameter, and this effect would be
washed out if the input values were randomised across its expected range. For this
reason, φ‖ and φ⊥ are generated at the values fitted from data for each configuration
of the fit.

Parameter Minimum Maximum
ct 400µm 500µm

∆Γ 0.0ps−1 0.6ps−1

α⊥ 0.0% 90.0%
α‖ 0.0% 90.0%

S−wave fraction 0.0% 10.0%
S−wave relative phase −π π

Table 5.5: Ranges of randomized inputs for realistic sample size pull studies.

This simultaneous randomisation technique was shown in [103] to give an equivalent
level of accuracy to the more standard approach of varying each parameter individu-
ally with the remaining parameters fixed, and has the advantage of covering the full
parameter space whilst minimising the necessary CPU time.
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For the pull studies, 1000 pseudo experiments are generated with signal and back-
ground events corresponding to the full dataset, for each fit configuration being tested.
The input values for generation of all parameters other than those discussed so far in
this section are taken from the corresponding fit values from data, with β

J/ψφ
s fixed or

floating, and with or without flavour tagging. Tables 7.1, 6.1 and 6.2 show the relevant
values from data for each of the fit configurations.

5.3.1 Studies at the Standard Model point

When β
J/ψφ
s is fixed to 0.0, which is approximately the Standard Model expected

value [3], the likelihood function is simplified, as can be seen from Equation 4.38. Studies
with this condition applied are shown in this section.

Flavour tagged fit with β
J/ψφ
s fixed to the SM prediction

For the flavour tagged likelihood fit with β
J/ψφ
s fixed to 0.0, the pull distributions

show little significant deviation from unit pulls. The parameters which do show small
biases in the pull distributions are dealt with by adding a systematic uncertainty to
their errors to account for the effect.

Figures 5.12 to 5.13 show the pull distributions for the flavour tagged fit with
β
J/ψφ
s =0.0, while Table 5.6 lists the mean and standard deviations for the pulls dis-

tributions for the parameters of interest. Full tables of pulls for all parameters in the
fit are given in Appendix F. The systematic error for parameters with biased pulls is
included by adding the fraction of the statistical error according to the size of the mean
shift of the pull. Any parameter with a pull bias of > 2σ is treated in this way; for α‖
and αCPOdd 15% of the statistical error is included as a systematic effect and for ∆Γ
8% of the statistical error is added. These percentages correspond to the shifts in the
pulls for the parameters effected, as shown in Table 5.6.
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Figure 5.12: Pull distributions and residuals for ∆Γ, cτ and the transversity amplitudes

αCPOdd and α‖ from tagged fit with fixed βJ/ψφs =0.0 . All fit parameters shown in these plots
are summarised in Table 5.6.
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Figure 5.13: Pull distributions and residuals for φ‖ and φ⊥ from tagged fit with fixed

β
J/ψφ
s =0.0 . All fit parameters shown in these plots are summarised in Table 5.6.

Parameter Pull mean Pull σ Residual mean Residual σ
cτ 0.05 ± 0.03 0.99 ± 0.03 0.00007 ± 0.00004 0.001 ± 0.00004
∆Γ -0.08 ± 0.03 1.00 ± 0.03 -0.004 ± 0.001 0.042 ± 0.0014
αcpo -0.15 ± 0.03 0.90 ± 0.02 -0.004 ± 0.001 0.016 ± 0.0004
α‖ 0.15 ± 0.03 0.88 ± 0.03 0.002 ± 0.001 0.019 ± 0.00064
φ‖ non-Gaussian non-Gaussian
φ⊥ 0.01 ± 0.02 0.87 ± 0.03 -0.008 ± 0.024 0.73 ± 0.026

Table 5.6: Pull study fit results for main parameters of interest using tagged fit with fixed

β
J/ψφ
s =0.0. Details for all fit parameters are given in Appendix F

The pulls for φ‖ show non-Gaussian behaviour, as can be seen in Figure 5.13, so
it is not possible to quote a value for this parameter with unbiased errors. There is a
reflected symmetry about π for φ‖, and for values close to π the the fit cannot always
determine clearly between the two cases. This results in a tendency for the fit to return
a value of π, the point exactly between them, as the fitted value. In previous analyses
at CDF the fit has been boxed for φ‖ values above or below π, but as the minimum is
now so close to π the boxing has been removed. The effect is illustrated in Figure 5.14,
which shows the distribution of fitted values for an input φ‖=3.08, with a peak in the
fitted values at π, and the likelihood profile for this parameter. This effect also appears
in the plot of the residual for φ‖ in Figure 5.13 which instead of a symmetric distribution
as would be ideal, has a significant peak at φ‖fit-φ‖input=0.08=π-3.08.

As a cross check, this pull study was repeated with a generated value of φ‖ = 1.5
in an ensemble of 500 pseudo experiments. The results are shown in Figure 5.15; this
parameter demonstrates unbiased behaviour when the generated value is far from the
reflection point at π.
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Figure 5.14: [Left]Fitted values for φ‖ with input value for pseudo experiments marked in red
[Right] Likelihood profile (minimised at each value of φ‖) for φ‖ with reflection point marked
as a dashed red line at π
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Figure 5.15: [Left] Unbiased pull for φ‖ from pseudo experiments with input value 1.5 [centre]
φ‖ residual [right] fitted distribution of φ‖

Fit without flavour tagging, with fixed β
J/ψφ
s =0.0

The untagged fit pull distributions here are included as a cross check. Figures 5.16
to 5.17 show the untagged fit pull distributions, Table 5.7 lists the fitted mean and stan-
dard deviations for these pulls, the pulls for all fit parameters are given in Appendix F.

Parameter Pull mean Pull σ Residual mean Residual sigma
cτ -0.02 ± 0.03 1 ± 0.02 -3e-06 ± 4e-05 0.001 ± 4e-05
∆Γ 0.06 ± 0.03 1 ± 0.02 0.002 ± 0.002 0.05 ± 0.002
αcpo -0.1 ± 0.03 1 ± 0.03 -0.003 ± 0.0005 0.02 ± 0.0004
α‖ 0.1 ± 0.03 1 ± 0.02 0.001 ± 0.0007 0.02 ± 0.0008
φ‖ non-Gaussian non-Gaussian

Table 5.7: Pull study fit results for main parameters of interest from untagged fit with fixed

β
J/ψφ
s =0.0 . Full details of the pulls for all fit parameters are given in Appendix F
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Figure 5.16: Pull distributions and residuals for ∆Γ and cτ from untagged fit with fixed

β
J/ψφ
s =0.0 . All fit parameters shown in these plots are summarised in Table 5.7.
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Figure 5.17: Pull distributions and residuals for αCPOdd, α‖ and φ‖, from untagged fit with

fixed βJ/ψφs =0.0 . All fit parameters shown in these plots are summarised in Table 5.7

5.3.2 Study of flavour tagged fit with β
J/ψφ
s floating

In the following discussion, β
J/ψφ
s is allowed to float in the fit. Pseudo experiments

for this study are generated with at β
J/ψφ
s =0.24 (the central value found in the full

data fit) which is relevant for judging the feasibility of presenting best fit values for the

parameters of interest from the fit with β
J/ψφ
s floating with the current sample size.

There are some significant biases in these results, especially for β
J/ψφ
s and the angular
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amplitudes. Figures 5.18- 5.19 show the pull distributions, the fitted mean and standard
deviation for the pulls and residual shifts are listed in Table 5.8 for the parameters of
interest, and in Appendix F for all fit parameters. These shifts are less significant than
those seen in the previous B0

s → J/ψ φ analyses at CDF with smaller data samples [7,

101], which is encouraging for the prospects of a study of β
J/ψφ
s utilising the full CDF

dataset at the end of data taking. It would be necessary to better understand the
behaviour of the fit across the full range of β

J/ψφ
s to ensure that any biases have been

accounted for before quoting a single value within errors for this parameter. The level
of non-Gaussian behaviour exhibited here combined with the unresolved symmetries in
the likelihood function prevent the possibility of presenting a point value for β

J/ψφ
s at

this stage.

Parameter Pull mean Pull σ Residual mean Residual sigma
cτ -0.23 ± 0.03 0.91 ± 0.025 -0.00035 ± 4.7e-05 0.0014 ± 4.4e-05
∆Γ 0.24 ± 0.032 0.96 ± 0.026 0.016 ± 0.0017 0.048 ± 0.0017
αcpo -0.18 ± 0.03 0.92 ± 0.024 -0.0029 ± 0.0005 0.016 ± 0.00041
α‖ 0.1 ± 0.031 0.96 ± 0.026 0.0017 ± 0.0007 0.021 ± 0.00075
φ‖ non-Gaussian non-Gaussian
φ⊥ 0.056 ± 0.04 1.1 ± 0.049 0.05 ± 0.02 0.61 ± 0.017

β
J/ψφ
s 0.34 ± 0.032 0.95 ± 0.037 0.026 ± 0.0028 0.072 ± 0.0032

Table 5.8: Pull study fit results for tagged fit pulls with input βJ/ψφs =0.24 and βJ/ψφs floating
in the fit . Full details of the pulls for all fit parameters are given in Appendix F.
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Figure 5.18: Pull distributions and residuals for ∆Γ, cτ , αCPOdd and α‖ with βJ/ψφs floating
in the flavour tagged fit. All fit parameters shown in these plots are summarised in Table 5.8.
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Figure 5.19: Pull distributions and residuals for φ‖, φ⊥and βJ/ψφs , with βJ/ψφs floating in the
flavour tagged fit. All fit parameters shown in these plots are summarised in Table 5.8.



Chapter 6

Measurement of B0
s lifetime and ∆Γs

assuming no CP violation

In this chapter the results for five parameters of interest are presented assuming
β
J/ψφ
s = 0.0, i.e. no CP violation. These parameters are the B0

s lifetime, τs, decay
width difference ∆Γ, transversity amplitudes, |A0(0)|2 and |A‖(0)|2, and the strong
phase φ⊥. A full study of the effects of systematic uncertainties on each parameter
is presented. Projections of the fit results onto individual parameters in data are
shown, to demonstrate the quality of the fit. These measurements are the world’s
best values for τs and ∆Γs, comparisons with previous measurements and world
averages are discussed.

6.1 Fitted values at the Standard Model point

As was demonstrated in Chapter 5, the maximum likelihood fit produces minimally
biased measurements of key physics parameters with β

J/ψφ
s fixed to 0.0, approximately

the Standard Model expected value [3]. Aside from constraining β
J/ψφ
s , the likelihood

fitter used to produce these SM point estimates is identical to that used in the final
measurement of β

J/ψφ
s , including use of flavour tagging variables. Thus, in addition to

giving the world’s most precise measurements of τs, ∆Γs and the angular amplitudes,
comparing these values to theoretical predictions and other measurements provides a
good cross check of the full analysis technique.

The fit parameters for which unbiased SM point values can be quoted are the proper
decay length, cτs (from which can be calculated the B0

s lifetime, τs), the decay width
difference, ∆Γs, the angular amplitudes |A0(0)|2| and |A‖(0)|2|, and the strong phase
φ⊥. The other strong phase, φ‖ was shown to demonstrate non-Gaussian behaviour even

with β
J/ψφ
s fixed to zero as explained in Section 5.3. For the fit without flavour tagging,

φ⊥ is not in the likelihood function when β
J/ψφ
s is set to 0.0, so in the comparison of

results at the end of this chapter, φ⊥ is only given for the flavour tagged fit.

Table 6.1 shows the best fit values for the 34 floating parameters of the PDFs
described in Chapter 4 where β

J/ψφ
s is fixed to zero. As a further check of the stability

of the fit, the results at the Standard Model point are assessed without flavour tagging,
the 22 floating variables for this case are shown in Table 6.2.
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Parameter Definition Value
Asw fraction of S-wave KK component in signal 0.019 ± 0.027
α⊥ CP odd fraction 0.266 ± 0.014
α‖ A‖ fraction in CP even states 0.306 ± 0.015
p1 mass background slope -2.3 ± 0.562
SD(SST ) SST dilution scale factor 0.924 ± 0.0847
SD(OST+) OST dilution scale factor + 1.12 ± 0.092
SD(OST−) OST dilution scale factor - 0.901 ± 0.175
δsw Relative phase of S-wave KK component 1.37 ± 0.77
εb(OST ) OST tagging efficiency for background 0.87 ± 0.002
εb(SST ) SST tagging efficiency for background 0.719 ± 0.00269
A+(OST ) OST background positive tag asymmetry 0.495 ± 0.00319
A+(SST ) SST background positive tag asymmetry 0.496 ± 0.00349
εs(OST ) OST tagging efficiency for signal 0.943 ± 0.00335
εs(SST ) SST tagging efficiency for signal 0.522 ± 0.00681
FCN NLL value -5.29e+05 ± 0
fp Prompt fraction of background 0.884 ± 0.00519
f− Fraction of bkg which decays w/λ− 0.173 ± 0.0336
f++ Fraction of bkg which decays w/λ++ 0.662 ± 0.0452
fs Signal Fraction 0.181 ± 0.00236
λ− Effective background lifetime, neg. comp. 0.0382 ± 0.00391
λ+ Effective background lifetime, pos. comp. 1 0.0407 ± 0.00364
λ++ Effective background lifetime, pos. comp. 2 0.0112 ± 0.00117
cτ average of cτH and cτL 0.0459 ± 0.000754
sm Mass error scale factor 1.73 ± 0.0216
m B hadron mass [MeV/c2] 5.37 ± 0.000131
Nevents Number of signal events 6.5e+03 ± 84.8
φ1 First parameter in bkg fit to φ 0.139 ± 0.00837
φ‖ arg(A‖A0) asymmetry parameter 3.08 ± 0.632
φ⊥ arg(A⊥A0) asymmetry parameter 2.95 ± 0.637
scτ1 Lifetime error scale factor 1 1.27 ± 0.0138
scτ2 Lifetime error scale factor 2 3.32 ± 0.19
fsf1 fraction of 1st lifetime error scale factor 0.882 ± 0.0119
cos(ψ)1 First parameter in bkg fit to cos(ψ) 0.0043 ± 0.0201
cos(θ)1 First parameter in bkg fit to cos(θ) 0.161 ± 0.0176
∆Γ CP asymmetry parameter [ps−1 ] 0.0746 ± 0.035
∆ms B0

s mixing frequency 17.7 ± 0.109

Table 6.1: Fit results for the fit with flavor tagging with βJ/ψφs fixed to 0.0 (the SM point)

6.2 Estimation of systematic uncertainties

Several assumptions or effects that are not fully accounted for in the likelihood func-
tion are considered to be sources of systematic uncertainty. Systematic uncertainties
can occur due to mis-parameterisation in the fit model, assumptions in the model, or
physical effects which are not well known or fully incorporated into the model. Ev-
ery effort is made to minimise biases present in the fit model, but it is important to
quantify any remaining systematic uncertainties in order to produce a full and accurate
description of the overall uncertainty for each measured parameter.
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Parameter Description — Value
Asw fraction of S-wave KK component in signal 0.00984 ± 0.0263
α⊥ CP odd fraction 0.267 ± 0.0146
α‖ A‖ fraction in CP even states 0.309 ± 0.0157
p1 mass background slope -2.28 ± 0.562
δsw Relative phase of S-wave KK component 1.57 ± 0.602
FCN NLL value -5.29e+05 ± 0
fp Prompt fraction of background 0.885 ± 0.00515
f− Fraction of bkg which decays w/λ− 0.168 ± 0.0328
f++ Fraction of bkg which decays w/λ++ 0.654 ± 0.0469
fs Signal Fraction 0.181 ± 0.00238
λ− Effective background lifetime, neg. comp. 0.0384 ± 0.00394
λ+ Effective background lifetime, pos. comp. 1 0.0407 ± 0.00365
λ++ Effective background lifetime, pos. comp. 2 0.0114 ± 0.00121
cτ average of cτH and cτL 0.0457 ± 0.000769
sm Mass error scale factor 1.72 ± 0.0216
m B hadron mass [MeV/c2] 5.37 ± 0.000131
Nevents Number of signal events 6.51e+03 ± 85.4
φ1 First parameter in bkg fit to φ 0.139 ± 0.00837
φ‖ arg(A‖A0) asymmetry parameter 2.93 ± 0.321
φ⊥ arg(A⊥A0) asymmetry parameter 1.27 ± 0.0132
scτ1 Lifetime error scale factor 1 3.35 ± 0.181
scτ2 Lifetime error scale factor 2 0.884 ± 0.0111
fsf1 fraction of 1st lifetime error scale factor 0.00462 ± 0.0201
cos(ψ)1 First parameter in bkg fit to cos(ψ) 0.159 ± 0.0176
cos(θ)1 First parameter in bkg fit to cos(θ) 0.572 ± 0
∆Γ CP asymmetry parameter [ps−1 ] 0.0705 ± 0.0357

Table 6.2: Fit results for the fit without flavor tagging, with βJ/ψφs fixed to 0.0 (the SM point)

To estimate the size of these uncertainties, an effect is identified which could be a
source of systematic uncertainty, then a set of 1000 pseudo-experiments are generated
with this effect included in the simulations but not in the likelihood fit. The studied
uncertainties are described in more detail in the following subsections. A set of ref-
erence pseudo-experiments, with no systematic variations, is also produced and fitted
in the same way. The systematic error quoted quoted for each effect is the difference
between the mean shift of the fitted value of each parameter from its input value for the
pseudo-experiments with the systematic alteration included, and the equivalent shift for
the reference set of pseudo-experiments which are generated using the default model.
For each systematic effect studied, the same seed for randomisation is used as for the
reference set in order to minimize any variations between the samples. Using the differ-
ence between the shift for the systematically altered experiments and the reference set
is a conservative choice of method, which aims to avoid systematic effects being hidden
by statistical fluctuations.

The individual systematic uncertainties are summed in quadrature and presented in
Table 6.18 to give the total contribution to the errors for each parameter due to sources
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of systematic uncertainty. Table 6.3 shows the deviations from the input values of the
fitted parameters for pseudo-experiments generated without systematic variations and
fitted with the default fit. The mean, significance, sigma and prob columns contain the
parameters of a Gaussian fit to the pull distribution: (fitted value - input value)/error,
“Shift” is the fitted minus the input value. For the tables in the following subsections,
the final column (“syst”) contains the systematic error for the systematically altered
pseudo experiments estimated from this study, which is calculated as Equation 6.1:

syst = (parfit − parinput)− shiftref. (6.1)

where parfit and parinput are values from the systematically altered set of pseudo experi-
ments, and shiftref is the difference for the reference set of pseudo experiments generated
using the default model.

Parameter Mean signi σ Prob Shift
cτ -0.04 ± 0.033 -1.2 1.0 0.72 -0.22 µm
∆Γ -0.0062 ± 0.035 -0.18 1.1 0.49 -0.00091 ps−1

αCPOdd -0.24 ± 0.031 -7.7 0.93 0.25 -0.0036
α‖ 0.19 ± 0.034 5.7 1.0 0.48 0.0026
φ⊥ -0.026 ± 0.029 -0.87 0.87 4.4e-10 -0.036 rad

Table 6.3: Summary of shifts from input value for reference pseudo experiments, these values
are subtracted from the shifts found in the alternatively modelled pseudo experiments used
to estimate the size of systematic uncertainties.

The following subsections describe the systematic effects which are accounted for,
with tables detailing the size of each effect on the parameters of interest.

6.2.1 Signal angular efficiency

One source of systematic uncertainty is the modelling of the angular efficiency of
the detector. In Section 4.4.1 it was explained that the efficiency is modelled by pa-
rameterising the angular efficiency in terms of an expansion using spherical harmonics
and Legendre polynomials. The coefficients for this parameterisation are fitted in real-
istically reconstructed Monte Carlo simulations which are reweighted to match the pT
distributions in data (Section 3.8). If this model does not accurately reflect the true
detector efficiency, it would introduce a systematic effect in the fit. This is tested by
generating pseudo-experiments with the angular efficiency functions taken directly from
3-dimensional histograms of the realistic Monte Carlo used to fit the polynomial coef-
ficients, instead of using the fitted function, then fitting them with the default model
which uses the angular PDF described in Section 4.4.1.

Additionally, any inaccuracies in the pT re-weighting of the Monte Carlo used to
fit the angular efficiency parameters could introduce a systematic uncertainty. This is
tested by generating pseudo-experiments as described in the previous paragraph, but
using non-reweighted Monte Carlo histograms for the angular efficiency functions.

Table 6.4 shows the divergences of the fitted parameters from the input values for the
study of the angular efficiency parameterisation with reweighted Monte Carlo, Table 6.5
shows the values for the test using non-reweighted Monte Carlo inputs.
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Parameter Mean signi σ Prob Shift Syst
cτ 0.098 ± 0.034 2.9 1.0 0.34 0.74 µm 0.96 µm
∆Γ 0.058 ± 0.036 1.6 1.1 0.08 0.0015 ps−1 0.0024 ps−1

αCPOdd -0.5 ± 0.033 -15 1.0 0.71 -0.0073 -0.0037
α‖ 0.89 ± 0.034 26 1.0 0.21 0.013 0.01
φ⊥ -0.028 ± 0.032 -0.87 0.95 0.0017 -0.02 rad 0.016 rad

Table 6.4: Summary of shifts from input value for pseudo experiments with signal angular
efficiency functions taken directly from pT reweighted Monte Carlo histograms, fit with the
default parameterisation.

Parameter Mean signi σ Prob Shift Syst
cτ 0.13 ± 0.039 3.3 1.1 0.0038 0.72 µm 0.94 µm
∆Γ -0.003 ± 0.038 -0.072 1.1 0.11 -0.0001 ps−1 0.00081 ps−1

αCPOdd -0.094 ± 0.038 -2.5 1.1 0.12 -0.002 0.002
α‖ 1.4 ± 0.039 36 1.1 0.12 0.02 0.017
φ⊥ 0.02 ± 0.036 0.55 1.0 0.017 -0.013 rad 0.022 rad

Table 6.5: Summary of shifts from input value for pseudo experiments with signal angular
efficiency functions taken directly from non-reweighted Monte Carlo histograms, fit with the
default parameterisation.

Another possible source of systematic uncertainty is mis-modelling of the true an-
gular sculpting of the detector in the realistic MC sample; this is checked in two ways.
One test of the model is to inspect the transversity angular distributions in background
(sideband) data, in comparison with the angular sculpting of the signal distributions, as
shown in Figure 6.1. The good agreement exhibited between these two distributions is
expected, but not guaranteed as the differing kinematics of the signal and background
events could lead to variations in the detector sculpting effects between them.

Figure 6.1: Comparison between transversity distributions of B0
s mass sideband region data

(red points) and phase space generated signal only Monte Carlo (black histograms)

In addition to the positive comparison between the MC transversity angles and
those found in sideband data, a further check was carried out to assess the effect of
the modelling. This study takes the extreme case of ignoring the angular efficiency in
the fit altogether, and fitting pseudo experiments generated with the default angular
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model. The results are not intended to be included as a systematic uncertainty in the
final results, simply to demonstrate that even in this extreme case of mis-modelling (by
treating the distributions as flat), the systematic effects determined are not overwhelm-
ingly large. Table 6.6 shows the results of this study.

Parameter Mean signi sigma Prob Shift Syst
cτ 0.21 ± 0.062 3.4 1.2 0.13 1.6 µm 1.9 µm
∆Γ -0.28 ± 0.057 -4.9 1.1 0.43 -0.016 ps−1 -0.015 ps−1

αCPOdd 0.86 ± 0.061 14 1.2 0.2 0.011 0.015
α‖ 1.4 ± 0.057 24 1.1 0.091 0.028 0.025
φ⊥ -0.065 ± 0.046 -1.4 0.87 0.0094 -0.018 rad 0.018 rad

Table 6.6: Shifts measured by fitting pseudo experiments generated with the default angular
efficiency model, and fitted with the efficiencies considered flat. This study demonstrates an
extreme case of mis-modelling in the realistic MC used to assess the angular efficiencies, which
is far from the case shown in Figure 6.1 and is not included in the final sum of systematic
errors.

The conclusion of the investigations into potential mis-modelling of the angular
efficiencies in the realistic MC sample, is that no systematic uncertainty in the final
results is included for this effect. An additional justification for this choice is the
inclusion of two conservative estimates of systematic uncertainties due to the angular
efficiency parameterisation and the MC re-weighting.

6.2.2 Signal mass model

By default, the signal B0
s mass is fitted with a single Gaussian model, as described in

Section 4.3.1, using the PDF in Equation 4.5. If this model is not accurate for the true
distribution in data, it would introduce a systematic uncertainty in the likelihood fit. To
analyze the effect of mismodelling this parameter, a different model is used to generate
pseudo-experiments, then they are fitted with the default fit. This alternative model
uses a double Gaussian B0

s mass parameterisation and two mass error scale factors,
shown in Equation 6.2 to simulate the effect on the fitted variables if the data had such
a distribution but was fitted with the single Gaussian model.

Ps(m|M,σm1, σm2, fm) = (fm)
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(6.2)

The parameters for generating the alternative model pseudo-experiments are ob-
tained by fitting the data with two Gaussians and two mass error scale factors. Ta-
ble 6.7 shows the divergences of the fitted parameters from the input values for this
systematic effect.
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Parameter Mean signi σ Prob Shift Syst
cτ -0.014 ± 0.035 -0.38 1.1 0.56 0.045 µm 0.26 µm
∆Γ -0.053 ± 0.036 -1.5 1.1 0.049 -0.0022 ps−1 -0.0013 ps−1

αCPOdd -0.27 ± 0.032 -8.4 0.97 0.071 -0.0045 -0.00092
α‖ 0.099 ± 0.034 2.9 1.0 0.19 0.0014 -0.0012
φ⊥ -0.061 ± 0.03 -2 0.86 8.9e-09 -0.044 rad -0.0086 rad

Table 6.7: Summary of shifts from input value for pseudo experiments with signal mass model
systematically altered, fit with the default fitter.

6.2.3 Background mass model

A first order polynomial, normalised over the range 5.2 < m(B0
s ) < 5.6 GeV is

the default model for the background mass distribution, this PDF is given in equa-
tion 4.6 and explained in more detail in Section 4.3.2. A systematic uncertainty could
be introduced if this model is not sufficient to describe the data. To analyse the effect
of a potential mismodelling of the background mass distribution, pseudo experiments
are generated with a 2nd order polynomial distribution for the background mass, and
fitted with the default 1st order polynomial model. The coefficients for the alternative
model experiments are taken directly from fitting the background mass with a 2nd order
polynomial in data.

Table 6.8 shows the divergences of the fitted parameters from the input values for
the assessment of this systematic uncertainty.

Parameter Mean signi σ Prob Shift Syst
cτ -0.19 ± 0.035 -5.5 1.1 0.11 -1.6 µm -1.4 µm
∆Γ 0.045 ± 0.035 1.3 1.1 0.89 0.00002 ps−1 0.00093 ps−1

αCPOdd -0.23 ± 0.033 -7 1.0 0.23 -0.0033 0.00031
α‖ 0.18 ± 0.034 5.4 1.0 0.34 0.0031 0.00053
φ⊥ -0.057 ± 0.03 -1.9 0.91 0.00054 -0.039 rad -0.0036 rad

Table 6.8: Summary of shifts from input value for pseudo experiments with background mass
model systematically altered, fit with the default fitter.

6.2.4 Lifetime resolution model

A systematic uncertainty could be introduced due to inaccuracies in the parame-
terisation of the detector resolution for the B0

s lifetime. The lifetime resolution for
signal events is modelled by convoluting each lifetime exponential term with two Gaus-
sian distributions, each with a different scale factor, as in Equation 4.21, described
in Section 4.4.2. To assess the level of systematic uncertainty due to this modelling of
the lifetime resolution, pseudo-experiments are generated with an alternative resolution
model. The alternative model uses three Gaussians with three separate scale factors,
two of which correspond to those fitted in data and the third which has a value between
those.
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P ′s(ct, σct|cτ, sct1,2,3) = P (ct|cτ)⊗ (fsct1G1(ct, σct|sct1)
+ (1− fsct1){fsct2G2(ct, σct|sct2) + (1− fsct2)G3(ct, σct|sct3)}

(6.3)

These alternative model pseudo experiments are fitted with the default model and
the shifts from the input to fitted values are presented in Table 6.9.

Parameter Mean signi σ Prob Shift Syst
cτ 0.018 ± 0.033 0.54 1.0 0.18 0.49 µm 0.69 µm
∆Γ -0.027 ± 0.034 -0.77 1.0 0.16 -0.0013 ps−1 -0.00041 ps−1

αCPOdd -0.21 ± 0.032 -6.6 0.98 0.98 -0.0033 0.00033
α‖ 0.15 ± 0.033 4.5 1.0 0.7 0.0024 -0.00022
φ⊥ -0.017 ± 0.029 -0.6 0.87 3.7e-06 -0.015 rad 0.022 rad

Table 6.9: Summary of shifts from input value for pseudo experiments generated with lifetime
resolution model systematically altered, fit with the default model.

6.2.5 Background lifetime fit model

The background lifetime model is described in Section 4.4.3, using the PDF in equa-
tion 4.23 to fit the background decay distributions with 3 exponentials and one Gaussian
function. The systematic uncertainty due to this parameterisation of the background
lifetime is assessed by generating pseudo-experiments with background lifetimes taken
from a histogram of the lifetime distribution for the sidebands of the Bs mass peak in
data and fitting them with the default fit model. This alteration tests the systematic
uncertainty due to the model, because the background lifetimes are generated accord-
ing to their actual distributions in data rather than the parameterisation used in the
default fit, so any significant discrepancies between the model and data should show as
shifts in the fitted values of the variables.

The shifts of the fitted parameters from the input values are shown in Table 6.10.

Parameter Mean signi σ Prob Shift Syst
cτ 0.23 ± 0.035 6.4 1.1 0.27 1.70 µm 2.00 µm
∆Γ -0.1 ± 0.038 -2.7 1.1 0.61 -0.0045 ps−1 -0.0036 ps−1

αCPOdd -0.19 ± 0.034 -5.5 1.0 0.087 -0.0029 0.0007
α‖ 0.26 ± 0.037 7.2 1.1 0.94 0.0033 0.0008
φ⊥ 0.036 ± 0.044 0.81 1.2 0.0007 0.022 rad 0.058 rad

Table 6.10: Summary of shifts from input value for pseudo experiments with background
lifetime model generated according to B0

s mass sideband data histograms, fit with the default
fitter.

6.2.6 Angular background model and correlations

The model for the transversity angles in data is given in Equation 4.24 and explained
in Section 4.4.3. Analogous to the method used to obtain the systematic uncertainty
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deriving from the background lifetime parameterisation (Section 6.2.5), the background
angular distribution is taken from the data sidebands to generate pseudo-experiments
and then fitted with the default background angular distribution to estimate the sys-
tematic uncertainty due to the choice of background angular model. The shifts of the
fitted values from the inputs for parameters in this study are shown in Table 6.11.

Parameter Mean signi σ Prob Shift Syst
cτ -0.048 ± 0.033 -1.5 1.0 0.45 -0.20 µm 0.021 µm
∆Γ 0.012 ± 0.035 0.35 1.1 0.67 -0.00069 ps−1 0.00021 ps−1

αCPOdd -0.22 ± 0.031 -7.1 0.97 0.93 -0.0036 -0.00003
α‖ 0.16 ± 0.033 4.8 1.0 0.62 0.0024 -0.00013
φ⊥ -0.027 ± 0.029 -0.9 0.86 2e-11 -0.037 rad -0.00084 rad

Table 6.11: Summary of shifts from input value for pseudo-experiments with background
angular model systematically altered, fit with the default fitter.

The model for the background transversity angles assumes the factorisability of the
three angular distributions, P (θ) P (ψ) and P (φ). However, some small correlations
can be observed in these angles, specifically between the angles φ and cos(θ), shown in
Figure 6.2. Also, a small effect can be seen between the background transversity angles
and σct.
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Figure 6.2: Background angular distributions (from B0
s sidebands) binned in each angle

The systematic effect of ignoring these small correlations in the default likelihood
function is assessed. For the uncertainty due to ignoring angular correlations with σ(cτ),
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Figure 6.3: Background angular distributions (from B0
s sidebands) binned in σ(cτ)

pseudo experiments are generated using histograms separated into three bins of σ(cτ)
as input for the background angle distributions instead of the model in Equation 4.24.
The shifts in the fitted values seen from this test by fitting with the default angular
parameterisation can be seen in Table 6.12. To check the systematic effect from as-
suming the factorisation of φ and cos(θ), pseudo experiments are generated with cos(θ)
and cos(ψ) sampled from the standard background histograms described at the start
of this subsection, and φ sampled according to the generated cos(θ) value from one
of three histograms of φ in different cos(θ) bins. These are fitted using the default
parameterisation in the fit, and the effects are shown in Table 6.13.

Parameter Mean signi σ Prob Shift Syst
cτ -0.053 ± 0.036 -1.5 1.1 0.59 -0.36 µm -0.14 µm
∆Γ -0.012 ± 0.035 -0.34 1.1 0.95 -0.00074 ps−1 0.00017 ps−1

αCPOdd -0.28 ± 0.033 -8.5 0.94 0.0014 -0.0033 0.00028
α‖ 0.14 ± 0.035 3.9 1.1 0.73 0.0017 -0.00085
φ⊥ -0.05 ± 0.039 -1.3 1.2 0.8 -0.030 rad 0.006 rad

Table 6.12: Summary of shifts from input value for pseudo-experiments with background
angular model systematically altered to account for correlations with σ(cτ), fit with the default
fitter.

Parameter Mean signi σ Prob Shift Syst
cτ -0.0074 ± 0.035 -0.21 1.1 0.63 -0.16 µm 0.059 µm
∆Γ -0.031 ± 0.036 -0.86 1.1 0.22 -0.0009 ps−1 0.00001 ps−1

αCPOdd -0.27 ± 0.033 -8.2 1.0 0.75 -0.0038 -0.00025
α‖ 0.24 ± 0.036 6.7 1.1 0.82 0.0031 0.00052
φ⊥ -0.064 ± 0.041 -1.6 1.2 1.0 -0.038 rad -0.0025 rad

Table 6.13: Summary of shifts from input value for pseudo-experiments with background
angular model systematically altered to account for non-factorisable contributions to the dis-
tributions of angles φ and cos(θ), fit with the default fitter.
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6.2.7 Bd crossfeed

It is possible for the signal B0
s → J/ψ φ decays to be contaminated by misrecon-

structed B0 → J/ψK∗0 events, where K∗ decays to Kπ, and the π is mis-identified as
a K. A small fraction of misidentified B0 → J/ψK∗0 events, referred to as crossfeed,
lie under the signal B0

s mass peak and pass the analysis selection. As this component
is not included in the fit model, it could introduce a systematic uncertainty in the fit.

To find the size of this systematic uncertainty for the parameters of interest, the
size of the crossfeed must first be estimated. This is done by using measured produc-
tion fractions of the B0

s and B0 mesons, their relative decay rates to Jψφ and JψK∗

respectively, and the efficiency of each type of event passing the analysis selection cuts
when reconstructed in the B0

s → J/ψ φ hypothesis. The production fractions are taken
from [29] and the branching fractions from [10], the efficiencies are estimated using
realistic Monte Carlo, with both B0

s → J/ψ φ and B0 → J/ψK∗0 reconstructed as
B0
s → J/ψ φ. The fraction of B0 crossfeed events in the B0

s sample is calculated as:

f(B0 in B0
s sample) =

F(b̄ → B0)B(B0 → J/ψK∗0)ε(B0)

F(b̄ → B0
s )B(B0

s → J/ψ φ)ε(B0
s )

(6.4)

From Equation 6.4 the fraction of B0 crossfeed in the signal sample used for this analysis
is 1.6 ± 0.6%. To make a conservative estimate of the systematic uncertainty this adds
to the measurement of the parameters of interest, pseudo experiments are generated
with a fraction 2.2% B0 crossfeed (the estimated value plus 1σ) events, and fitted
with the default model which has no knowledge of this component. The crossfeed
component is generated by using values of the B0 lifetime, decay width and transversity
amplitudes from the CDF angular analysis of B0 → J/ψK∗0 decays [50]. Shifts from
the input values for the fitted value of each parameter for this altered model are shown
in Table 6.14.

Parameter Mean signi σ Prob Shift Syst
cτ -0.017 ± 0.035 -0.48 1.0 0.29 0.025 µm 0.24 µm
∆Γ -0.034 ± 0.036 -0.94 1.1 0.039 -0.0023 ps−1 -0.0014 ps−1

αCPOdd -0.29 ± 0.032 -9 0.95 0.75 -0.0045 -0.00091
α‖ 0.14 ± 0.034 4 1.0 0.2 0.0017 -0.00089
φ⊥ -0.04 ± 0.029 -1.4 0.86 0.061 -0.030 rad 0.006 rad

Table 6.14: Summary of shifts from input value for pseudo experiments with B0 crossfeed
included, fit with the default fitter.

6.2.8 SVX alignment

A systematic uncertainty can be introduced by the assumption that the silicon
detector (described in Section 2.2.1) is perfectly aligned, when it can actually be mis-
aligned by bowing of the detector layers of up to 50 µm [104]. Precise knowledge of
the positions of all elements of the tracking system is of particular importance to the
measurement of the lifetime of the B0

s , as it is measured in terms of the proper decay
length, cτs, which is calculated from vertex positions measured in the tracking detectors.
An in depth study of the effect of the limited knowledge of the CDF silicon detector
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alignment was carried out in [104], which concluded that a conservative estimation of
the systematic uncertainty on cτ in CDF lifetime measurements is 2 µm. This was
done by fully reconstructing both data and realistic Monte Carlo under different silicon
alignment assumptions, with shifts of ±50 µm in all silicon detector components. The
lifetime was fitted in several B → J/ψX channels, and the worst shift was taken as
the systematic uncertainty on the lifetime due to the assumption of perfect silicon
alignment.

The value of 2 µm is taken as the systematic uncertainty on cτs in this analysis, and
is used in the assessment of secondary effects on the other parameters of interest. Due to
correlations between the lifetime and the other physics parameters, it is expected that an
additional uncertainty on the lifetime measurement will also cause uncertainties in the
measurement of the other parameters. To quantify the effect on the other parameters,
pseudo experiments are generated with the lifetime shifted ± 2 µm and fitted as usual
so that comparisons can be made between the input and fitted values of the parameters
of interest. Results of this test are displayed in Table 6.15.

Parameter Mean signi σ Prob Shift Syst
∆Γ 0.0066 ± 0.038 0.17 1.1 0.95 -0.00036 ps−1 0.00055 ps−1

αCPOdd -0.21 ± 0.033 -6.5 0.96 0.36 -0.0035 0.00011
α‖ 0.14 ± 0.034 4.1 0.98 0.096 0.0026 0.0001
φ⊥ -0.021 ± 0.03 -0.7 0.88 0.05 -0.033 rad 0.0024 rad

Table 6.15: Summary of shifts from input value for pseudo experiments with B0
s lifetime

shifted ± 2 µm according to the expected effect from silicon detector mis-alignment, which
are fit with the default fitter assuming perfect alignment.

6.2.9 Mass error distribution

In the construction of the likelihood fit function, the distribution of errors on the
mass is assumed to be the same for signal and sideband events. If these distributions
are actually not consistent for signal and background, as is the case for the proper
decay length errors described in Section 4.4.2, this should be taken into account in the
likelihood function.The size of the systematic uncertainty due to this assumption is
checked by generating pseudo experiments with mass error distributions modelled by
histograms of B0

s sideband data for background events and sideband subtracted signal
region data for signal events separately, then fitted with the default model. Shifts in
the fitted values from the inputs to the pseudo experiments are displayed in Table 6.16.

6.2.10 cτ error distribution

A source of systematic uncertainty can be introduced through the modelling of σcτ .
As shown in Section 4.4.2, the proper decay length error PDFs for signal and background
are parameterised separately as sets of Gamma functions given in Equation 4.22, with
the coefficients taken from a fit to data. To test the effect of any mismodelling in this
parameterisation, pseudo experiments are generated with σcτ randomly sampled from
data histograms of sideband and sideband subtracted data, then fitted with the default
model.

It was also observed that there was a small effect arising from σ(cτ) − mass cor-
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Parameter Mean signi σ Prob Shift Syst
cτ 0.0036 ± 0.046 0.078 1.1 0.12 0.26 µm 0.48 µm
∆Γ 0.0065 ± 0.049 0.13 1.2 0.76 -0.001 ps−1 -0.00011 ps−1

αCPOdd -0.26 ± 0.046 -5.7 1.1 0.89 -0.0035 6.6e-05
α‖ 0.16 ± 0.044 3.7 1.1 0.83 0.002 -0.00053
φ⊥ -0.14 ± 0.049 -2.9 1.2 0.27 -0.038 rad -0.0023 rad

Table 6.16: Summary of shifts from input value for pseudo experiments with mass error taken
from histograms of sideband and sideband subtracted data histograms, fit with the default
fitter which assumes a single distribution for signal and background mass errors.

relations in the latest CDF B → JψX lifetimes analysis [105]. Such a potential effect
is accounted for in this systematic study by taking the cτ error distributions from the
upper and lower sidebands separately when generating the alternative model pseudo ex-
periments, according to where the generated mass of background events lies. The size of
the systematic uncertainties caused by these alterations to the generated experiments
are shown in Table 6.17.

Parameter Mean signi σ Prob Shift Syst
cτ -0.0092 ± 0.046 -0.2 1.1 0.77 -0.045 µm 0.17 µm
∆Γ -0.075 ± 0.049 -1.5 1.2 0.56 -0.0021 ps−1 -0.0012 ps−1

αCPOdd -0.22 ± 0.044 -5.1 1.1 0.57 -0.003 0.00058
α‖ 0.16 ± 0.047 3.4 1.1 0.94 0.002 -0.00056
φ⊥ -0.12 ± 0.051 -2.3 1.2 0.87 -0.048 rad -0.013 rad

Table 6.17: Summary of shifts from input value for pseudo experiments with cτ error generated
from histograms of sideband and sideband subtracted data histograms instead of the usual
parameterisation, then fit with the default model.

6.2.11 Combined systematic errors

Table 6.18 shows the systematic errors summed in quadrature for each parameter
which will be presented in this measurement. The largest effects on the lifetime mea-
surement come from the parameterisation of the background lifetimes and the silicon
detector alignment, however, all of the systematic uncertainties are significantly lower
than the statistical error. The modelling of the background lifetimes also has a rela-
tively large effect on the decay width difference, ∆Γs, which is to be expected as this
parameter is dependent on the measurement of the heavy and light B0

s lifetimes. The
main systematic effect on the angular amplitudes and the strong phase φ⊥ is caused by
the knowledge of the signal angular efficiency of the detector. The angular amplitudes
shown in Table 6.18 have been converted from those used in the maximum likelihood
fit (α‖ and αCPOdd) to the initial amplitudes A0(0) and A‖(0) using the calculation
described in Section 4.7.

The calculation of values for the Pull bias entry in Table 6.18 is explained in Sec-
tion 5.3.1.
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Systematic ∆Γ(ps−1) cτs (µm) |A‖(0)|2 |A0(0)|2 φ⊥(rad)
Signal efficiency:

Parameterisation 0.0024 0.96 0.0076 0.008 0.016
MC reweighting 0.0008 0.94 0.0129 0.0129 0.022

Signal mass model 0.0013 0.26 0.0009 0.0011 0.009
Background mass model 0.0009 1.4 0.0004 0.0005 0.004
Resolution model 0.0004 0.69 0.0002 0.0003 0.022
Background lifetime model 0.0036 2.0 0.0007 0.0011 0.058
Background angular distribution:

Parameterisation 0.0002 0.02 0.0001 0.0001 0.001
σ(cτ) correlation 0.0002 0.14 0.0007 0.0007 0.006
Non-factorisation 0.0001 0.06 0.0004 0.0004 0.003

B0 → JψK∗ crossfeed 0.0014 0.24 0.0007 0.0010 0.006
SVX alignment 0.0006 2.0 0.0001 0.0002 0.002
Mass error 0.0001 0.58 0.0004 0.0004 0.002
cτ error 0.0012 0.17 0.0005 0.0007 0.013
Pull bias 0.0028 0.0013 0.0021
Totals 0.01 3.6 0.015 0.015 0.07

Table 6.18: Summary of systematic uncertainties assigned to parameters of interest.

6.3 Fit projections on physics parameters

An important check of the fitter performance is carried out by projecting the dis-
tributions from the multidimensional fit onto single parameters. Projections of the fit
results are shown overlaid with data for the proper decay length and angular ampli-
tudes in Figures 6.4-6.7 for the fit using flavour tagging with β

J/ψφ
s fixed to 0.0, and the

untagged case with the same β
J/ψφ
s condition.
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Figure 6.4: Fit projection of the B0
s proper decay length distribution in the signal region for

the tagged fit (left) and untagged fit (right) with βJ/ψφs = 0.0

6.4 Results in the hypothesis of no CP violation

Values are presented here for the lifetime (proper decay length), decay width differ-
ence, angular amplitudes and strong phase measured in B0

s → J/ψ φ decays at CDF.
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Figure 6.5: Fit projection of the B0
s proper decay length distribution in the sideband region

for the tagged fit (left) and untagged fit (right) with βJ/ψφs = 0.0

cτs = 458.6± 7.5 (stat.)± 3.6 (syst.) µm

∆Γ = 0.075± 0.035 (stat.)± 0.01 (syst.) ps−1

|A‖(0)|2 = 0.231± 0.014 (stat)± 0.015 (syst.)

|A0(0)|2 = 0.524± 0.013 (stat)± 0.015 (syst.)

φ⊥ = 2.95± 0.64 (stat)± 0.07 (syst.) rad (6.5)

which are the world’s most precise single determination of these parameters. They are
in good agreement with an earlier iteration of this analysis at CDF [7] and for those
which have been measured elsewhere, with world averages. The B0

s lifetime is calculated
from the proper decay length as

τs = 1.53± 0.025 (stat.)± 0.012 (syst.) ps (6.6)

which can be compared to the world average value [10] of τs = 1.47+0.026
−0.027ps.

For a cross check within this dataset, the results for the fit without flavour tagging
information in the Standard Model hypothesis (β

J/ψφ
s =0.0), with statistical errors only

are

cτs = 456.9± 7.7 (stat.) µm

∆Γ = 0.071± 0.036 (stat.) ps−1

|A‖(0)|2 = 0.233± 0.015 (stat)

|A0(0)|2 = 0.521± 0.013 (stat) (6.7)

Comparing the statistical errors in 6.5 and 6.7 shows that in addition to being able
to quote an additional parameter (φ⊥) by using the flavour tagged fit, there is a slight
reduction in the statistical errors.

For completeness, and assurance that the inclusion of the S-wave KK component
in the fit does not have a large effect on the measurement, SM point values are shown
here from the fit without the S-wave included. This provides a clear comparison with
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Figure 6.6: Fit projections of the transversity angles for the flavour tagged fit with βJ/ψφs =0.0
(top) all data (middle) sideband subtracted signal (bottom) background

earlier versions of this analysis as well as checking consistency within the results from
this dataset.

For the fit with flavor tagging, the fitted values without the S-wave are in excellent
agreement with the results with the S-wave KK component included in the fit:
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Figure 6.7: Fit projections of the transversity angles for the untagged fit with β
J/ψφ
s =0.0

(top) all data (middle) sideband subtracted signal (bottom) background

cτs = 459.1± 7.7 (stat.) µm

∆Γ = 0.073± 0.03 (stat.) ps−1

|A‖(0)|2 = 0.232± 0.014 (stat)

|A0(0)|2 = 0.523± 0.012 (stat)

φ⊥ = 2.80± 0.56 (stat) rad (6.8)
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The results for direct comparison with the CDF result produced for ICHEP 2008 [7],
with 2.8 fb−1 data, are from the fit without flavour tagging and the S-wave KK com-
ponent not included:

cτs = 457.2± 7.89 (stat.) µm [459± 12± 3µm]

∆Γ = 0.070± 0.04 (stat.) ps−1 [0.02± 0.05± 0.01 ps−1]

|A‖(0)|2 = 0.233± 0.016 (stat) [0.241± 0.019± 0.01]

|A0(0)|2 = 0.520± 0.013 (stat) [0.508± 0.024± 0.01]

(6.9)

where the values in square brackets are from [7].

The preceding comparisons show that the agreement between the four cases of the
fit is good, as is the consistency with external experimental results.



Chapter 7

Results for CP violating parameter
βs

In this chapter the main results of this analysis will be presented. The results are
given not as a measurement of a best fit value of βJ/ψφs and associated uncertainties
but rather as 2-dimensional confidence level contours as a function of βJ/ψφs and
∆Γ. These represent the latest results from CDF in the measurement of βJ/ψφs ,
and are the most accurate measurements to date of this parameter. The statistical
technique used to create these contours is explained, and the results of several studies
to validate the method. Further discussion of the S-wave KK[f0] component is
given; this is the first study of B0

s → J/ψ φ decays to incorporate this additional
channel.

7.1 Fitted values with β
J/ψφ
s floating in fit

The maximum likelihood method described in Chapter 4 was used to present fitted
point values for several parameters of interest in Chapter 6, with the CP violating phase
β
J/ψφ
s fixed to zero which is approximately its standard model value [3]. In Chapter 5

it was shown that non-negligible biases are present in the full fit with β
J/ψφ
s allowed

to float, and symmetries exist in the likelihood function which prevent the fitter from
selecting a single value of β

J/ψφ
s , so a different technique is required to produce a result

for β
J/ψφ
s itself. Instead of quoting a single value with errors, results for this parameter

are given in the form of confidence intervals, in the 1-dimensional space of β
J/ψφ
s and

the 2-dimensional space of β
J/ψφ
s and ∆Γ. The 2-dimensional contours are of interest

as theory predicts a relationship between β
J/ψφ
s and ∆Γ of [44]

∆Γ = 2|Γs12| cos(2βs) (7.1)

where Γs12 is the off-diagonal matrix element of the effective Hamiltonian in Equa-
tion 1.28.

The values found by the maximum likelihood fitter in the case with and without
the use of flavour tagging are presented in Tables 7.1 and 7.2. Later in this section,
the size of the B0

s → J/ψKK component in the B0
s → J/ψ φ signal is presented and

discussed. The variables in these tables are introduced in Chapter 4. The method used
for measuring β

J/ψφ
s is described in Section 7.2, and the results in 7.3.1.

136
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Parameter Description Value
ASW fraction of S-wave KK component in signal 0.018 ± 0.0234
α⊥ CP odd fraction 0.264 ± 0.0138
α‖ A‖ fraction in CP even states 0.307 ± 0.0149
p1 mass background slope -2.3 ± 0.562
β
J/ψφ
s CP asymmetry parameter 0.244 ± 0.132
SD(SST ) SST dilution scale factor 0.924 ± 0.0847
SD(OST+) OST dilution scale factor + 1.12 ± 0.0919
SD(OST−) OST dilution scale factor - 0.886 ± 0.174
δSW Relative phase of S-wave KK component 1.5 ± 0.64
εb(OST ) OST tagging efficiency for background 0.87 ± 0.002
εb(SST ) SST tagging efficiency for background 0.719 ± 0.00269
A+(OST ) OST background positive tag asymmetry 0.495 ± 0.00319
A+(SST ) SST background positive tag asymmetry 0.496 ± 0.00349
εs(OST ) OST tagging efficiency for signal 0.943 ± 0.00335
εs(SST ) SST tagging efficiency for signal 0.522 ± 0.00681
FCN NLL value -5.29e+05 ± 0
fp Prompt fraction of background 0.884 ± 0.0052
f− Fraction of bkg which decays w/λ− 0.172 ± 0.0334
f++ Fraction of bkg which decays w/λ++ 0.661 ± 0.0453
fs Signal Fraction 0.181 ± 0.00236
λ− Effective background lifetime, neg. comp. 0.0382 ± 0.00392
λ+ Effective background lifetime, pos. comp. 1 0.0405 ± 0.0036
λ++ Effective background lifetime, pos. comp. 2 0.0112 ± 0.00117
cτ average of cτH and cτL 0.0459 ± 0.000726
sm Mass error scale factor 1.73 ± 0.0216
m B hadron mass [MeV/c2] 5.37 ± 0.000131
Nevents Number of signal events 6.5e+03 ± 84.9
φ1 First parameter in bkg fit to φ 0.139 ± 0.00836
φ‖ arg(A‖A0) asymmetry parameter 3.02 ± 0.473
φ⊥ arg(A⊥A0) asymmetry parameter 3.03 ± 0.517
scτ1 Lifetime error scale factor 1 1.27 ± 0.0138
scτ2 Lifetime error scale factor 2 3.32 ± 0.19
fsf1 fraction of 1st lifetime error scale factor 0.882 ± 0.0119
cos(ψ)1 First parameter in bkg fit to cos(ψ) 0.004 ± 0.0201
cos(θ)1 First parameter in bkg fit to cos(θ) 0.161 ± 0.0176
∆Γ CP asymmetry parameter [ps−1 ] 0.0973 ± 0.0351
∆ms B0

s mixing frequency 17.7 ± 0.11

Table 7.1: Fit results for the fit with flavor tagging with βJ/ψφs floating

7.1.1 Measurement of the fraction of S-wave KK present in
B0
s → J/ψ φ sample

Tables 7.1 and 7.2 show that the value of the S-wave KK fraction of the B0
s →

J/ψ φ signal is estimated consistently within errors between the fit with and without
flavour tagging. However, as discussed in Chapter 5 and above, biases in the maximum
likelihood fitter at this level of statistics, and the proximity of the boundary at ASW = 0
mean that it is not possible to quote a point value for the S-wave fraction using the
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Parameter Description Value
ASW fraction of S-wave KK component in signal 0.0106 ± 0.0182
α⊥ CP odd fraction 0.265 ± 0.0153
α‖ A‖ fraction in CP even states 0.31 ± 0.0162
p1 mass background slope -2.28 ± 0.562

β
J/ψφ
s CP asymmetry parameter 0.575 ± 0.12
δSW Relative phase of S-wave KK component 2.74 ± 0.649
FCN NLL value -5.29e+05 ± 0
fp Prompt fraction of background 0.885 ± 0.00516
f− Fraction of bkg which decays w/λ− 0.166 ± 0.0324
f++ Fraction of bkg which decays w/λ++ 0.649 ± 0.0475
fs Signal Fraction 0.181 ± 0.00239
λ− Effective background lifetime, neg. comp. 0.0384 ± 0.00394
λ+ Effective background lifetime, pos. comp. 1 0.0405 ± 0.00359
λ++ Effective background lifetime, pos. comp. 2 0.0113 ± 0.00123
cτ average of cτH and cτL 0.0443 ± 0.00123
sm Mass error scale factor 1.72 ± 0.0217
m B hadron mass [MeV/c2] 5.37 ± 0.000131
Nevents Number of signal events 6.52e+03 ± 86.1
φ1 First parameter in bkg fit to φ 0.139 ± 0.00837
φ‖ arg(A‖A0) asymmetry parameter 3.41 ± 0.236
φ⊥ arg(A⊥A0) asymmetry parameter 4.36 ± 0.321
scτ1 Lifetime error scale factor 1 1.27 ± 0.0132
scτ2 Lifetime error scale factor 2 3.35 ± 0.181
fsf1 fraction of 1st lifetime error scale factor 0.884 ± 0.011
cos(ψ)1 First parameter in bkg fit to cos(ψ) 0.00452 ± 0.0201
cos(θ)1 First parameter in bkg fit to cos(θ) 0.159 ± 0.0176
∆Γ CP asymmetry parameter [ps−1 ] 0.174 ± 0.0636

Table 7.2: Fit results for the fit without flavor tagging with βJ/ψφs floating

full likelihood fit. The value of this parameter is of great interest, and as introduced
in Chapter 1, there has been for some time discussion in the field ([46, 47]) of this
contribution to the signal sample. In order to present a limit on the fraction of the
B0
s → J/ψ φ signal sample coming from B0

s → J/ψKK a likelihood scan was carried
out, in which the S-wave fraction was fixed at 100 evenly spaced points within its likely
range, and all other parameters floated in the fit. The results of this scan are shown
in Figure 7.1. Also of interest is the relative phase of this S-wave contribution. The
likelihood scan for δSW , the phase of relative phase of the S-wave KK component, is
also shown in Figure 7.1.

From Figure 7.1, it can be seen that there is not enough sensitivity to the S-wave
KK relative phase to quote a likelihood interval for this parameter; the minimum value
has a significance of < 1σ. For the S-wave KK fraction, the Gaussian behaviour of
the errors means that confidence limits can be presented at the (1-tailed) 68 % and 95
% confidence levels. These are calculated by integrating the probability distribution in
Figure 7.2. At the 68% confidence level, the upper limit on the fraction ofB0

s → J/ψKK
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Figure 7.1: [left] Likelihood profile for the fraction of S-wave KK component in the B0
s →

J/ψ φ signal, [right] likelihood profile of the relative phase of the S-wave KK component.

in the B0
s → J/ψ φ signal is 3.5%, and at the 95% confidence the upper limit is 6.2%.

These estimates are somewhat lower than the predictions in the previously cited papers,
which suggest of order 6% as a central value, but are not inconsistent.
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Figure 7.2: Probability distribution for the fraction of the B0
s → J/ψ φ signal made up of

B0
s → J/ψKK. The blue line indicates the 68% confidence limit of 3.5%, the red line the

95% limit of ASW = 6.2%

As a cross check of the values measured by the full likelihood fit, an alternative
technique was also used to examine the potential non-resonant KK or f0 contamination
of the φ meson signal in B0

s → J/ψ φ. This was done by looking directly at the invariant
KK mass distribution from the φ → KK decays, and observing whether a significant
additional component could be seen below the φ signal. The φ meson mass window
is expanded from the narrow one used in the main fit, which gives a greater range to
investigate this effect, but also allows a significantly larger B0 → J/ψK∗0 crossfeed
component than the negligible amount described in Section 6.2.7 of the previous chapter,
which must be accounted for. This component is modelled using fully simulated B0 →
J/ψK∗0 Monte Carlo which has been reconstructed as B0

s → J/ψ φ. The expected
non-resonant component is small, it could easily be absorbed if the combinatorial or
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B0 → J/ψK∗0 fractions were allowed to vary in a fit to the KK mass, as this flat
distribution could simply boost one of those fractions. In order to avoid washing out
this small component, instead of fitting the KK invariant mass where the S-wave KK
part is expected to be a flat distribution, the invariant J/ψK+K− mass is fitted in a
data sample using the enlarged φ mass window selection. This fit includes

• Signal B0
s mass

Modelled by a single Gaussian distribution as in Section 4.3

• Combinatorial background
Modelled by a first order polynomial distribution as in Section 4.3

• B0 → J/ψK∗0 crossfeed Modelled using realistic Monte Carlo simulation of
B0 → J/ψK∗0 misreconstructed as B0

s → J/ψ φ, this effect is described in
Section 6.2.7

There is no non-resonant component included in this fit so far, the idea of the test
is to investigate whether there appears to be a significant component missing with only
the signal, background and misreconstructed B0 → J/ψK∗0 parts. The fractions
of each component found in this fit are then projected onto the KK invariant mass
distribution, where the signal φ mass shape is modelled using Equation 4.17. The fit
to the J/ψK+K− invariant mass, and the projections of the fitted fractions of each
component onto the KK invariant mass are shown in Figure 7.3.
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Figure 7.3: [left] Fit to invariant J/ψK+K− mass with enlarged φ meson mass window,
including signal, combinatorial background and mis-reconstructed B0 → J/ψK∗0components
[right] invariant K+K− mass distribution, with projected components of signal, combinatorial
background, and mis-reconstructed K∗

From the right hand plot in Figure 7.3, there is no clear evidence for a significant
missing pedestal component, however, this does not constitute evidence against the
existence of the S-wave channel in the sample. While this cross check provides no
conclusive evidence for or against the existence of an S-wave KK component under the
φ meson mass peak, it indicates no disagreement with the small central value measured
in the full likelihood fit.
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7.1.2 Fit projections

The projections for the fit with and without flavour tagging, with β
J/ψφ
s allowed

to vary, are shown in Figures 7.4-7.7. They demonstrate good agreement between the
fitted function and the data distributions for these parameters.

Figure 7.4: Fit projection of the B0
s proper decay length distribution in the signal region

(left) and sideband region (right) for the flavour tagged fit
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Figure 7.5: Fit projection of the B0
s proper decay length distribution in the signal region

(left) and sideband region (right) for the untagged fit

7.2 Confidence regions for β
J/ψφ
s and ∆Γ

As, for reasons previously discussed, the maximum likelihood fit is not sufficient to
produce an estimate of the value of β

J/ψφ
s , instead the results are presented in the form

of confidence regions, the construction of which is described in Section 7.2.1.

If the behaviour of a log likelihood ratio is parabolic near its minimum then N -
sigma regions can be defined in terms of the area under a Gaussian function within
the relevant range of the log likelihood ratio ∆(L) for a given N , which will be defined
in Section 7.2.1. However if the behaviour is not parabolic, these ranges need to be
adjusted to ensure that a claimed 1σ interval actually covers the same region as if the
errors were Gaussian. This is easier to visualise in 1-dimension, but is also applicable
to the 2-dimensional case. In order to ensure that the non-Gaussian behaviour of the
statistical errors does not result in under-coverage of the relevant parameter space, and
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Figure 7.6: Fit projections of the transversity angles for the flavour tagged fit with

β
J/ψφ
s floating (top) all data (middle) sideband subtracted signal (bottom) background

to account for systematic effects on the statistical errors, the confidence regions are
adjusted using a frequentist method described in Section 7.2.2.

7.2.1 Likelihood profiles

Construction of the likelihood profiles for β
J/ψφ
s and ∆Γ uses a likelihood ratio

method. This is carried out both in 1-dimension for β
J/ψφ
s only, and 2-dimensions

for β
J/ψφ
s and ∆Γ. Here, the method will be described for the 2-dimensional case,



Chapter 7. Results for CP violating parameter βs 143

)ψcos(
-1 -0.8-0.6-0.4-0.2 -0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500 all data

fit projection

)θcos(
-1 -0.8-0.6-0.4-0.2 -0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500 all data

fit projection

 [rad]φ
0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500 all data

fit projection

)ψcos(
-1 -0.8-0.6-0.4-0.2 -0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700
sideband subtracted data

fit projection

)θcos(
-1 -0.8-0.6-0.4-0.2 -0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700
sideband subtracted data

fit projection

 [rad]φ
0 1 2 3 4 5 6

0

100

200

300

400

500

600

700
sideband subtracted data

fit projection

)ψcos(
-1 -0.8-0.6-0.4-0.2 -0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

sideband data

fit projection

)θcos(
-1 -0.8-0.6-0.4-0.2 -0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

sideband data

fit projection

 [rad]φ
0 1 2 3 4 5 6

0

100

200

300

400

500

600

700

800

900

sideband data

fit projection

Figure 7.7: Fit projections of the transversity angles for the untagged fit with βJ/ψφs floating
(top) all data (middle) sideband subtracted signal (bottom) background

and where relevant the modifications to the 1-dimensional case will be clarified. Before
describing the technique it is useful to define some quantities:

• µ is the set of all parameters other than those under study (β
J/ψφ
s , or β

J/ψφ
s and

∆Γ), also called nuisance parameters.

• L(β
J/ψφ
s ,∆Γ, µ) is the likelihood with all parameters floating

• L(β
J/ψφ
s,i ,∆Γj, µ) is the likelihood function with the nuisance parameters floating,
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and the parameters of interest fixed to specific points i, j.

The stages to construct the likelihood profile are then as follows:

• Initial fit with all parameters floating
The full maximum likelihood fit is performed (with or without flavour tagging

information) to find the values of β
J/ψφ
s and ∆Γ which maximise the likelihood.

This point in β
J/ψφ
s -∆Γ space is called the global minimum. The likelihood value

at this point is recorded and denoted as LG

• Fit at each point on a 20×20 grid in β
J/ψφ
s -∆Γ space

The fit is then performed with β
J/ψφ
s and∆Γ fixed to each point on an evenly

spaced 20×20 grid, with range −π/2 < β
J/ψφ
s < π/2, −0.7 < ∆Γ < 0.7. The

likelihood at each point is recorded as Li,j

• Construction of likelihood contours
Likelihood contours for different probability regions, or σ levels, can be drawn by
connecting points on the grid for which 2∆ logL ≡ 2(LG − Li,j) corresponds to
the relevant value for the desired confidence level.

The modification to this method for the 1-dimensional case is that instead of a grid, the
fit uses 10 equally spaced points along the expected range of β

J/ψφ
s , between−π/2− π/2.

The relevant 2∆ logL ≡ 2(LG−Li,j) values for each confidence level and dimension-
ality can be found in a look-up table such as is given in [106]. For the 2-dimensional
case, the value of 2∆ logL corresponding to the 1σ or 68% confidence level is 2.30, and
for the 2σ or 95% level is 5.99. The values for 2∆ logL corresponding to 1 and 2σ for
the 1-dimensional case are 1.0 and 4.0 respectively.

In an attempt to resolve the ambiguity due to the invariance in the likelihood func-
tion under certain symmetries described in Section 4.6, the fit can be carried out sep-
arately for the strong phase φ‖ < π or φ‖ > π, which removes the exact symmetry in
the flavour tagged fit, and one of the symmetries for the fit without flavour tagging.
However, with the limited statistics available, certain approximate symmetries remain
in the likelihood. These occur because the terms on which the determination of certain
parameters depend are very close to zero, limiting the power of the likelihood fitter
to find an exact value. With the current dataset, the statistical limitations make it
difficult to determine the sign of ∆Γ, and the quadrant in which the phases β

J/ψφ
s , φ⊥

and φ‖ lie. This results in a local minimum, in addition to the global minimum found
by the NLL minimisation process; the likelihood profiles need to be symmetrised to
account for this effect.

Without the S-wave KK component, this symmetrisation can be done by simply
reflecting the contours about the symmetry axis, but as was previously described, the
inclusion of this component breaks the exact symmetry in {βs,∆Γ, φ⊥, φ‖} ⇒ {π/2 −
βs,−∆Γ, π−φ⊥, 2π−φ‖}. If the addition of the S-wave KK in the likelihood changed
the depth of the minima (with φ‖ < π or φ‖ > π), this would mean that the ambiguity

in β
J/ψφ
s was resolved, and a single value could be selected, but unfortunately, due

to the small size of the measured S-wave KK component this is not the case. The
difference in 2∆ logL for the two φ‖ options is < 0.05 units, which is not significant.
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Thus, the symmetrisation is carried out by constructing the contours as described here,
for both φ‖ < π and φ‖ > π, then producing a single set of likelihood contours by taking
the deeper minima of the two at each point on the grid.

This method constitutes a part of the full technique used to produce the final like-
lihood contours for β

J/ψφ
s and ∆Γ. The final component to complete the statistical

integrity of the contours is highly computationally intensive, so it is convenient to carry
out some initial studies using only this part of the technique before applying the full
coverage adjustment to produce statistically sound final results.

Unadjusted contours for full dataset

First, it is interesting to look at the likelihood profiles for the full dataset before any
coverage adjustment. In Figure 7.8 the 2-dimensional profiles are shown from the fit
with and without flavour tagging. These demonstrate clearly the symmetries described
in section 4.6, and the reduction from the four fold ambiguity seen in the untagged case
to the two fold ambiguity by tagging the flavour of the decaying B0

s meson is clearly

visible. This effect is also seen in the 1-dimensional profile of β
J/ψφ
s , in Figure 7.9
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Figure 7.8: Unadjusted 2-dimensional likelihood profiles for βJ/ψφs -∆Γ in full dataset with
(left) flavour tagged fit and (right) fit without tagging information.

Comparison of fit with and without flavour tagging in pseudo experiments

To check the behaviour of the likelihood fitter, it is useful to compare its result in
different datasets. In order to do this, pseudo experiments can be generated, with equal
statistics to the real dataset, and input values for parameter generation taken from the
fit to data, in this case shown in Table 7.1. This gives multiple simulated experiments
on which to cross check the fitter behaviour, which have the same underlying true values
of the fitted parameters. From these experiments it is possible to see whether the fitter
performs consistently in the configuration with and without flavour tagging.

In this test, 5 pseudo experiments were generated, then the 2-dimensional likelihood
contours in β

J/ψφ
s -∆Γ space were generated as described earlier in this section. One

simplification was made for the study; the symmetrisation of the contours was carried
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Figure 7.9: Unadjusted likelihood profiles for βJ/ψφs in full dataset with (left) flavour tagged
fit and (right) fit without tagging information.

out by reflecting about the symmetry axis instead of the full technique discussed above.
This approximation is justified for use in this cross check by the observed minimal
effect of adding in the S-wave KK component on the breaking of the symmetry in the
likelihood function.

These likelihood contours are shown in Figure 7.10. Aside from the additional
minima in the fit where tagging of the initial B0

s meson flavour is not used, the contours
around the minima which coincide with the flavour tagged fit are larger - showing less
sensitivity to the value of β

J/ψφ
s and ∆Γ, as would be expected for a fit with less

information.

Comparison of likelihood contours in different parts of the dataset

Perhaps a more significant comparison, is the behaviour of the fit with and without
flavour tagging on different samples of real data. This can only be done by dividing up
the complete dataset, so the reduction in statistics must be accounted for when looking
at these contours next those from the full sample.

The data was divided into three time periods of approximately equal luminosity,
which correspond to each of the updates of the B0

s → J/ψ φ analysis. These three
subsets were fitted with the flavour tagged and untagged fitters to produce likelihood
contours. For ease of comparison with earlier CDF results, these were fitted with the
S-wave KK fixed to 0.0 which is consistent with the previous analyses that did not
account for the S-wave KK component.

These likelihood contours can be seen in Figure 7.11. At the first instance, the rows
in Figure 7.11 appear somewhat varied, for samples which are subsets of the same data.
However, they are consistent within statistical errors, and a similar level of variation
can be seen in the pseudo experiments in Figure 7.10 so this does not indicate any
inconsistency between the data from different periods of time. Another point which
can be taken from this study is the agreement between the fit with and without flavour
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tagging included, for the different data periods. As in the previous test, the positive
β
J/ψφ
s side of the untagged contours can be compared to those with flavour tagging

information, and these show similar behaviour for the different parts of the dataset.

7.2.2 Coverage adjustment

The likelihood profile technique described so far does not account for the non-
Gaussian distribution of the statistical errors, which can be seen from the shape of
the unadjusted contours, or systematic effects on the errors. In order to properly in-
clude these effects, which will ensure that the final confidence regions do in fact cover
the area in β

J/ψφ
s -∆Γ space corresponding to the claimed confidence level, a Likelihood

Ratio Ordering technique [107] is used.

Firstly considering the coverage adjustment to account for non-Gaussian statistical
errors, 1000 pseudo experiments are generated at the Standard Model expected point on
the β

J/ψφ
s -∆Γ grid described in Section 7.2.1 (or at the SM expected value of β

J/ψφ
s =0.02

for the 1-dimensional case). These are each fitted twice, once with all parameters

floating (L(β
J/ψφ
s ,∆Γ, ~µ)) and once with β

J/ψφ
s and ∆Γ fixed to their generated values

(L(β
J/ψφ
sSM ,∆ΓSM , ~µ)). From these, a likelihood ratio can be constructed:

R = 2 log
L(β

J/ψφ
s ,∆Γ, ~µ)

L(β
J/ψφ
sSM ,∆ΓSM , ~µ)

. (7.2)

Likelihood ratios for all of the pseudo experiments are stored in a histogram, which is
normalised and integrated, to give a probability distribution of (1-Confidence Level),
where the confidence level (CL) corresponds to the probability that the true value lies
within the interval defined for that level. These distributions are shown as the solid
black lines in Figure 7.12 for the 1- and 2-dimensional flavour tagged and untagged
versions of the fitter.

Studies carried out for the CDF published result for β
J/ψφ
s [4], which are documented

in [101] showed that calculating the coverage adjustment at this single point is as

conservative as using pseudo experiments generated at every point on the β
J/ψφ
s -∆Γ grid

independently, so the single point approach is chosen for economy of computational
time.

The normalised (1-CL) distributions for the pseudo experiments are used to adjust
the likelihood profiles described in the previous section, by selecting the appropriate
values for 2∆ logL to give coverage of 68% and 95% confidence regions. The canonical
values, of 2.30 (1σ level) and 5.99 (2σ level) for the 2-dimensional case are only valid for
the situation where the errors on the parameters of interest exhibit perfectly Gaussian
behaviour. These are the points on the y-axis of the distributions in Figure 7.12 where
the Gaussian distribution (shown in green) has a (1-CL) value corresponding to (1-0.95)
and (1-0.68). To adjust to the non-Gaussian case, instead of the canonical values the
points on the y-axis where the distribution from the pseudo experiments intersects with
the relevant (1-CL) line are used. Histogram binning effects are avoided by interpolating
from one bin edge to the next at the point where the distribution meets each (1-CL)
value.

For the 2-dimensional β
J/ψφ
s -∆Γ confidence regions from the fit without flavour

tagging information, the adjusted 2∆ logL values are
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Figure 7.11: Likelihood contours for (left) fit with flavour tagging (right) fit with no flavour
tagging information in dataset divided into 3 time periods, integrated luminosity L = 0-1.35
fb−1, L = 1.35-2.8 fb−1 and L = 2.8-5.2 fb−1.
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• 68% CL (1σ confidence region): 2∆ logL = 3.50

• 95% CL (2σ confidence region): 2∆ logL = 7.96

For the 2-dimensional β
J/ψφ
s -∆Γ confidence regions where flavour tagging of the

initial B0
s state is included, the adjusted values are

• 68% CL (1σ confidence region): 2∆ logL = 2.85

• 95% CL (2σ confidence region): 2∆ logL = 7.34

For the 1-dimensional β
J/ψφ
s confidence interval where flavour tagging is used, the

adjusted values are

• 68% CL (1σ confidence region): 2∆ logL = 1.68

• 95% CL (2σ confidence region): 2∆ logL = 5.37

The values of these levels for the Gaussian case were given in Section 7.2.1

Using these adjusted values, the likelihood regions for each case described above can
be presented, ignoring systematic effects. Figure 7.13 show the tagged and untagged
fit 2-dimensional contours, and 1-dimensional β

J/ψφ
s scan from the tagged fit after this

initial stage of adjustment.

Systematic variations

In addition to correcting the likelihood contours due to the non-Gaussian error
distributions, effects of systematic variations in the set of nuisance parameters are
accounted for using an extension of the technique described so far in this section.

To observe the effects of potential systematic variations in all parameters other
than β

J/ψφ
s and ∆Γ (or β

J/ψφ
s only, in the 1-dimensional case), pseudo experiments

are generated in 16 alternate universes. The concept of these universes is that each
represents a physical situation with a different set of measurements for the nuisance
parameters; the pseudo experiments used for the non-Gaussian error adjustment can
be considered as being in our universe as they have values of nuisance parameters taken
directly from the measured values in data. For each alternate universe, 1000 pseudo
experiments are generated, where the input values for the generation of the nuisance
parameters have been randomly varied within ±5σ of their measured value in data.
Each experiment within one universe has the same set of input values, however the
randomised values are different for every universe. These randomised input values are
given for each universe in Appendix G.

The construction of likelihood ratios, and from those, distributions of (1-CL) values
for the pseudo experiments is carried out as described earlier in this section for the
adjustment to non-Gaussian errors. In Figure 7.12, the dashed lines each represent
a different universe. It can be seen from this figure that nearly all of the alternate
universes lie further from the Gaussian error regime than our universe, which for the
flavour tagged fit in particular is very close to Gaussian. This is thought to be an effect of
the randomisation for inputs with asymmetric limits, namely the S-wave KK fraction,
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Figure 7.12: Distributions of (1-CL) for pseudo experiments used to check the likelihood cover-

age of βJ/ψφs -∆Γ confidence regions. [top left] fit using flavour tagging for 2-dimensional,[top
right] fit using flavour tagging for 1-dimensional contours, [bottom right] fit without flavour
tagging information for 2-dimensional contours.βJ/ψφs

ASW . When selecting an input value to generate within ± 5σ of the central value of
ASW , the cut off at 0.0 must be observed as this parameter cannot take a negative
value. As 0.0 is less than 1σ below the central value, the majority of parameter space
available is above the level found in our universe, so the alternate universes are likely
to have a larger ASW which can push the errors further from the Gaussian regime. The
values of ASW for the alternate universes can be seen in Appendix G.

The 2∆ logL values for this adjustment are taken from the (1-CL) distribution of the
universe which lies furthest from the Gaussian regime at each confidence level. These
values are, for the 2-dimensional β

J/ψφ
s -∆Γ confidence regions fitted without flavour

tagging

• 68% CL (1σ confidence region): 2∆ logL = 3.77
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Figure 7.13: Confidence regions for βJ/ψφs and ∆Γ after adjustment to account for non-
Gaussian statistical errors [top left] fit using flavour tagging, 2-dimensional contours,[top right]
fit using flavour tagging, 1-dimensional contours, [bottom right] fit without flavour tagging
information, 2-dimensional contours.βJ/ψφs .

• 95% CL (2σ confidence region): 2∆ logL = 8.67

For the 2-dimensional β
J/ψφ
s -∆Γ confidence regions where flavour tagging of the initial

B0
s state is included, the adjusted values are

• 68% CL (1σ confidence region): 2∆ logL = 4.27

• 95% CL (2σ confidence region): 2∆ logL = 9.10

For the 1-dimensional β
J/ψφ
s confidence interval where flavour tagging is used, the ad-

justed values are

• 68% CL (1σ confidence region): 2∆ logL = 2.93
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• 95% CL (2σ confidence region): 2∆ logL = 7.73

These are the numbers used to set the levels of the final confidence regions, which
are presented in Section 7.3.1. They can be compared to those calculated to adjust for
the non-Gaussian error distributions, and as expected, the adjustment is larger when
systematic variations in the nuisance parameters are taken into account. That the
shift between these two adjustments is somewhat larger for the fit with flavour tagging
included, is expected because there including flavour tagging information adds an extra
12 nuisance parameters into the fit, all of which are varied within ±5σ for the systematic
coverage adjustment.

7.3 Final measurement of β
J/ψφ
s and ∆Γ

7.3.1 Confidence regions for β
J/ψφ
s and ∆Γ

The final confidence regions with full coverage adjustment are shown from the fit
with flavour tagging of the initial B0

s state in Figure 7.14, and without flavour tagging in

Figure 7.15. These are the first measurements of β
J/ψφ
s to include the B0

s → J/ψKK
component in the fit function, and make use of the largest single data sample for
this analysis to date. The Standard Model point on the following plots is marked at
β
J/ψφ
s = 0.02 [3], with ∆Γ = 0.096± 0.039 [44].
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Figure 7.14: 2-dimensional confidence regions in βJ/ψφs -∆Γ space, with flavour tagging of the
initial B0

s state. Likelihood regions adjusted to include systematic effects.

The fully adjusted likelihood profile in 1-dimension for β
J/ψφ
s is shown in Figure 7.16,

this scan is from the fit including flavour tagging. From this, likelihood intervals for
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Figure 7.15: 2-dimensional confidence regions in β
J/ψφ
s -∆Γ space, without flavour tagging

of the initial B0
s state, to cross-check the effect of flavour tagging on the measurement.

Likelihood regions adjusted to include systematic effects.

β
J/ψφ
s can be presented. At the 68% confidence level, β

J/ψφ
s is within

[0.02, 0.52] ∪ [1.08, 1.55], (7.3)

and at the 95% level

[−π/2,−1.44] ∪ [−0.13, 0.68] ∪ [0.89, π/2]. (7.4)

7.3.2 Standard Model p-values

It is valuable to estimate the probability that the measured values for β
J/ψφ
s and

∆Γ from this analysis are in fact fluctuations from true values which are the Standard
Model expectation of β

J/ψφ
s =0.02, ∆Γ=0.096 [3]. To do this, p-values are calculated

by comparing likelihood ratios for the global minimum and Standard Model point in
the data sample, and in pseudo experiments generated with β

J/ψφ
s and ∆Γ at their

Standard Model expected values.

The p-value for the Standard Model values of β
J/ψφ
s and ∆Γ in the dataset is defined

as the fraction of pseudo experiments generated in the Standard Model hypothesis which
the likelihood fitter measures as having at least as large a fluctuation from the Standard
Model as in the data sample. The size of the fluctuation in each experiment is measured
the ratio given in Equation 7.2, and the p-value is calculated as

P(βJ/ψφs0.02
,∆Γs0.096) =

NR>Rdata

Ntotal

(7.5)
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Figure 7.16: 1D confidence intervals for βJ/ψφs with full coverage adjustment, using flavour
tagged fit.

where Ntotal is the total number of pseudo experiments. The same set of pseudo ex-
periments is used for this estimation as for the coverage adjustment explained in the
previous section.

For each coverage adjusted set of confidence regions, a p-value can be calculated for
the Standard Model hypothesis. In the 2-dimensional β

J/ψφ
s -∆Γ study using flavour

tagging information, the p-value is 0.44, equivalent to a 0.8σ fluctuation from the Stan-
dard Model expectation. Without flavour tagging, in the 2-dimensional case, the p-value
is 0.08, or 1.7σ. The case of the fit without flavour tagging is significantly less sensitive
to the true value of β

J/ψφ
s , as can be seen from the size of the confidence regions, and

this version of the fit has a tendency to find a higher value for β
J/ψφ
s than when the full

tagging information is included (as seen in Figure 7.10), so observing a slightly larger
deviation from the Standard Model point would be expected in the untagged fit. For
the 1-dimensional β

J/ψφ
s confidence intervals using the flavour tagged fit, the p-value

is 0.31, which equates to a 1.0σ deviation. In each case, the p-value is well below 3σ,
indicating no evidence for a significant deviation from the Standard Model expectation
in the data.



Conclusion

In this thesis, the analysis of B0
s → J/ψ φ decays to measure β

J/ψφ
s using the CDF

detector at Fermilab has been presented. For the first time, the contribution of B0
s →

J/ψKK(f 0) decays to the B0
s → J/ψ φ signal sample has been assessed and included

in the likelihood fit function, where the non-resonant KK, or f 0 is an S-wave state.
The resulting measured values for β

J/ψφ
s and ∆Γ using the full flavour tagged fit are

displayed as confidence regions, shown in Figure 7.14, and the 1-dimensional confidence
intervals for β

J/ψφ
s in Figure 7.16.
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Figure 7.17: [left] Comparison of unadjusted β
J/ψφ
s -∆Γ likelihood profile for flavour tagged

fit with and without the S-wave KK component included in the likelihood function. [right]
Overlay of fully adjusted confidence regions from the fit with and without flavour tagging of
the initial B0

s meson state.

To cross check the behaviour of the fit, which uses flavour tagging of the initial
B0
s meson state, the fully coverage adjusted confidence regions were also constructed for

the likelihood fit without flavour tagging information. This fit has less sensitivity to the
value of β

J/ψφ
s , but shows no disagreement with the flavour tagged case, as can be seen in

the right hand plot of Figure 7.17 where the two versions are overlaid. To check the effect
of adding in the B0

s → J/ψKK component, the unadjusted likelihood profiles from the
fit with and without this additional part are shown in the left hand plot of Figure 7.17.
The upper limit on the S-wave KK fraction of the signal B0

s → J/ψ φ sample was
measured as 6.2% at the 95% confidence level, and the small effect seen in the difference
between these two likelihood profiles reflects this small contribution. In addition to this
modification of the likelihood function, other improvements to the analysis include re-
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calibrated particle ID and flavour taggers, a novel optimisation of the NN cut level for
data selection and an enhanced dataset of ∼ 6500 signal events.

With a p-value of 0.44, the Standard Model expected values of β
J/ψφ
s and ∆Γ are

compatible with the flavour tagged measurements. This p-value indicates a 0.8σ devia-
tion in the measured value from the expectation, which is a smaller shift than observed
in previous analyses [4, 7, 6]. The contours can be compared between two earlier CDF
measurements, and the Tevatron combined result using data from CDF and DØ in
Figure 7.18. The combined result has a similar statistical sample size to this latest
measurement, and found a deviation of 2.2σ from the Standard Model expectation. A
comparison of the results obtained from the fit with and without taking the S-wave
KK component into account is shown in Fig 7.17. This demonstrates that the addition
of this component has not caused a shift towards the Standard Model value, as the
contours are very similar in both cases of the fit. The studies in pseudo experiments,
and in different data periods, presented in Figures 7.10 and 7.11, show that the confi-
dence regions are prone to statistical fluctuations, and demonstrate that the observed
differences of the order of 1σ between the latest and previous results are thus to be
expected. Within errors, all of the confidence regions in Figure 7.18 are consistent.

On the plots in Figure 7.18, a green band is superimposed, which shows within
theoretical errors the relationship ∆Γ = 2|Γ12| cos(2βs). The bottom right plot in this

figure shows that the β
J/ψφ
s -∆Γ confidence regions from this latest measurement are in

very good agreement with this predicted relationship.

The measurement of the CP violating phase β
J/ψφ
s is complimented by further mea-

surements of parameters of interest. These have been assessed with the assumption of
no CP violation (β

J/ψφ
s =0.0). They include the world’s most precise determination of

the lifetime and decay width difference of the B0
s meson, as well as the transversity

amplitudes and the phase φ⊥:

τs = 1.53± 0.025 (stat.)± 0.012 (syst.) ps

∆Γ = 0.075± 0.035 (stat.)± 0.01 (syst.) ps−1

|A‖(0)|2 = 0.231± 0.014 (stat)± 0.015 (syst.)

|A0(0)|2 = 0.524± 0.013 (stat)± 0.015 (syst.)

φ⊥ = 2.95± 0.64 (stat)± 0.07 (syst.) (7.6)

These results use the fully flavour tagged fit with β
J/ψφ
s fixed to 0.0. A detailed

study of the influences of systematic effects for these measurements was presented in
Chapter 6. The τs measurement compares well with the PDG world average value [10]
of τs = 1.47+0.026

−0.027 ps. Theoretical predictions from HQET (also see Chapter 1) for the
parameter τs suggest that the ratio of the B0

s and B0 lifetimes should be ≈ 1 [30]. The
B0 lifetime was recently measured at CDF in the channel B0 → J/ψK∗0 [105] to be

τB0 = 1.50± 0.010 (stat.)± 0.008 (syst.) ps (7.7)

comparing this with the B0
s lifetime measured in B0

s → J/ψ φ shows consistency with
HQET predictions.

Looking to the future, it is clear from the progression shown in Figure 7.18 that in-
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Figure 7.18: Comparison of latest βJ/ψφs -∆Γ confidence regions (lower right) with previous
results from CDF published analysis [4] (upper left), CDF ICHEP 2008 result [7] (upper right)
and Tevatron combined result using 2.8 fb−1 datasets from both CDF and D0 experiments [6].

creasing the data sample size will not only shrink the confidence regions, giving a more
accurate estimation of the true value of β

J/ψφ
s , but also reduce non-Gaussian uncertain-

ties in the measurement, bringing the errors closer to a fully Gaussian regime. Further
increases in statistics should make the measurement of a point value for β

J/ψφ
s achiev-

able. The CDF experiment expects a total recorded dataset of > 10 fb−1 by the end
of 2011 [108]. This would mean approximately doubling again the sample size avail-

able for the measurement of β
J/ψφ
s . As CDF stops taking data, and the LHC data

samples increase, it will be the turn of the LHC experiments to take on this measure-
ment. In particular LHCb expects a high precision in a direct measurement of β

J/ψφ
s in

B0
s → J/ψ φ [109]. Furthermore the large expected statistics and higher center of mass

energy will open up additional channels to access β
J/ψφ
s .



Appendix A

Study of dE/dx dependence on
correlated parameters

The following figures show the dependence of uncalibrated dE/dx on six variables, in
slices of each of the other variables. These were used in conjunction with cross checks
at each stage of the calibration process to find which parameters could be corrected
independently and which must be treated simultaneously. Those parameters for which
the behaviour of dE/dx is comparable in different slices (neglecting a global shift) are
considered to be factorisable.
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Figure A.1: variations in measured dE/dx with respect to luminosity, track density (secance),
time, in slices of each ther parameter
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Figure A.2: variations in measured dE/dx with respect to time, eta, phi0 and number of COT
hits, in slices of each other parameter



Appendix B

Normalisation of
B0
s → J/ψ φ transversity PDF

The PDF for time and transversity angle dependence in B0
s → J/ψ φ decays is devel-

oped in Chapter 4, here the analytic normalisation of this component is explained in
more detail, following the method described in [101]. Starting from Equation 4.9, the
first step is to integrate over time the decay rates

∫
|f+(t)|2 + |f̄+(t)|2dt = 1,

∫
|f−(t)|2 + |f̄−(t)|2dt = 1,

∫ ∑

i=B,B̄

f+(t)f ∗−(t)dt =
i√

1 + 4τLτH
((τL−τH) sin 2β′)2

, (B.1)

giving factors which can be substituted in via Equation 1.81 to re-write N as

N =
9

16π

∫ ∫ ∫
d(cosψ)d(cos θ)dφ


|A+ × n̂|2 + |A− × n̂|2 + 2Re((A+ × n̂) · (A∗

− × n̂)
i√

1 + 4τLτH
((τL−τH) sin 2β′)2

)




ε(ψ, θ, φ). (B.2)

For the purposes of simplifying the angular integration, it can be observed that

sin θ cosφ =

√
2π

3
(Y −1

1 − Y 1
1 ),

sin θ sinφ =

√
2π

3
i(Y −1

1 + Y 1
1 ),

cos θ =

√
4π

3
Y 0

1 . (B.3)
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where, recalling Equations 1.62, 1.84 and 1.84, the terms above enter the PDF as
products. These can be substituted into N to give

N =
9

16π

∫ ∫ ∫
ε(ψ, θ, φ)d(cosψ)d(cos θ)dφ

|A⊥|2
2

[√
16π

9
Y 0

0 −
√

16π

45
Y 0

2

]
sin2 ψ

+
|A‖|2

2

[√
4π

9
Y 0

0 +

√
16π

45
Y 0

2

]
sin2 ψ + |A0|2

[√
4π

9
Y 0

0 +

√
16π

45
Y 0

2

]
cos2 ψ

+
|A‖|2

2

[√
4π

9
Y 0

0 −
√

4π

45
Y 0

2 +

√
2π

15
(Y −2

2 + Y 2
2 )

]
sin2 ψ

+|A0|2
[√

4π

9
Y 0

0 −
√

4π

45
Y 0

2 −
√

2π

15
(Y −2

2 + Y 2
2 )

]
cos2 ψ

+i
A‖A∗0 + A∗‖A0√

2

[√
2π

15
(Y −2

2 − Y 2
2 )

]
sinψ cosψ + 2Re


 i√

1 + 4τLτH
((τL−τH) sin 2β′)2

×
{
A‖A∗⊥

2

√
2π

15
(Y −1

2 + Y 1
2 ) sin2 ψ + i

A0A
∗
⊥√

2

√
2π

15
(Y −1

2 − Y 1
2 ) sinψ cosψ

}]

ε(ψ, θ, φ)d(cosψ). (B.4)

Now, the efficiency function can be dealt with, this was defined in Equation 4.10 in
terms of spherical harmonics and Legendre polynomials. Integrating Equation 4.10
gives

∫ ∫
Y m
l (θ, φ)Ȳ m′

l′ (θ, φ) sin θdθdφ = δmm′δll′ ,

Y −m
l (θ, φ) = (−1)mȲ m

l (θ, φ), (B.5)
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Putting this definition into Equation B.4 leads to

N =
9

16π

∫
d(cosψ)

|A⊥|2
2

[√
16π

9
a0

0(ψ)−
√

16π

45
a0

2(ψ)

]
sin2 ψ

+
|A‖|2

2

[√
4π

9
a0

0(ψ) +

√
16π

45
a0

2(ψ)

]
sin2 ψ + |A0|2

[√
4π

9
a0

0(ψ) +

√
16π

45
a0

2(ψ)

]
cos2 ψ

+
|A‖|2

2

[√
4π

9
a0

0(ψ)−
√

4π

45
a0

2(ψ) +

√
2π

15
(a−2

2 (ψ) + a2
2(ψ))

]
sin2 ψ

+|A0|2
[√

4π

9
a0

0(ψ)−
√

4π

45
a0

2(ψ)−
√

2π

15
(a−2

2 (ψ) + a2
2(ψ))

]
cos2 ψ

−i
A‖A∗0 + A∗‖A0√

2

[√
2π

15
(a−2

2 (ψ)− a2
2(ψ))

]
sinψ cosψ + 2Re


 i√

1 + 4τLτH
((τL−τH) sin 2β′)2

×
{
−A‖A

∗
⊥

2

√
2π

15
(a−1

2 (ψ)) + a1
2(ψ) sin2 ψ + i

A0A
∗
⊥√

2

√
2π

15
(a−1

2 (ψ)− a1
2(ψ)) sinψ cosψ

}]
.

(B.6)

A set of orthonormal basis functions, in terms of spherical harmonics

Ylm = Y m
l (m = 0),

Ylm =
1√
2
(Y m

l + (−1)mY −m
l ) m > 0,

Ylm =
1

i
√

2
(Y

|m|
l − (−1)|m|Y −|m|

l ) m < 0. (B.7)

are used to express the coefficients alm as

alm = aml (m = 0),

alm =
1√
2
(aml + (−1)|m|a−ml ) m > 0,

alm =
i√
2
(a
|m|
l − (−1)|m|a−|m|l ) m < 0. (B.8)

Substituting the explicit forms of B.8 into N , and simplifying terms leaves an integral
dependent only on ψ:
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N =
3

8
√
π

[
(|A⊥|2 + |A‖|2)

∫
a00(ψ) sin2 ψd(cosψ) + 2|A0|2

∫
a00(ψ) cos2 ψd(cosψ)

]

+
3

8
√

5π

[
(−|A⊥|2 +

1

2
|A‖|2)

∫
a20(ψ) sin2 ψd(cosψ) + |A0|2

∫
a20(ψ) cos2 ψd(cosψ)

]

− 9

16
√

15π

1√
1 + 4τLτH

((τL−τH) sin 2β′)2

[
(A∗‖A⊥ + A‖A

∗
⊥)

∫
a2−1(ψ) sin2 ψd(cosψ)

]

+
9

16

√
2√

15π

1√
1 + 4τLτH

((τL−τH) sin 2β′)2

[
(A∗0A⊥ + A0A

∗
⊥)

∫
a21(ψ) sinψ cosψd(cosψ)

]

+
9

8
√

15π

[ |A‖|2
2

∫
a22(ψ) sin2 ψd(cosψ)− |A0|2

∫
a22(ψ) cos2 ψd(cosψ)

]

(B.9)

+
9

16

√
2√

15π

[
(A∗0A‖ + A0A

∗
‖)

∫
a2−2(ψ) sinψ cosψd(cosψ)

]
. (B.10)

Finally, N must be integrated over ψ, by expressing alm(ψ) as a Fourier-Legendre series:

alm(ψ) = aklmPk(cosψ). (B.11)

The few aklmterms remaining after integration are

∫
alm(cosψ) sin2(ψ)d(cosψ) =

4

3
a0
lm −

4

15
a2
lm,

∫
alm(cosψ) cos2(ψ)d(cosψ) =

2

3
a0
lm +

4

15
a2
lm,

∫
alm(cosψ) cos(ψ) sinψd(cosψ) =

π

8
a1
lm −

π

32
a3
lm + .... (B.12)

which are substituted into Equation B.10 to give the final normalisation for the B0
s →

J/ψ φ PDF which is given in Equation 4.11. The integration of the S-wave KK
component PDF and S- and P -wave interference term is carried out numerically in the
fit.



Appendix C

Results of 3-dimensional fit to
detector angular efficiency

The results of the 3-dimensional fit to the detector angular sculpting of the transver-
sity angles described in Section 4.4.1 is given in Table C.1. These coefficients can be
substituted into the normalisation factor in Equation 4.11 to normalise the PDF for
B0
s decay time and transversity angular distributions.
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Coefficient Fit Result Coefficient Fit Result Coefficient Fit Result
C0

00 843.96 ± 0.778826 C0
22 40.2944 ± 6.92456 C0

33 -0.0941144 ± 0.45078
C2

00 -9.00419 ± 0.78018 C2
22 -2.71047 ± 6.93834 C2

33 -0.188061 ± 0.451555
C0

11 -3.73299 ± 0.797056 S0
22 0.468246 ± 7.01755 S0

33 2.59885 ± 0.455331
C2

11 -0.525782 ± 0.79737 S2
22 0.50368 ± 7.02796 S2

33 -1.09173 ± 0.456139
S0

11 0.630685 ± 0.769779 C0
21 0.783937 ± 0.792322 C0

32 11.2979 ± 6.11867
S2

11 -0.43546 ± 0.772351 C2
21 1.26672 ± 0.793161 C3

32 -1.26441 ± 6.13092
C0

10 0.225966 ± 0.770231 S0
21 -0.3033 ± 0.761416 S0

32 -0.0258396 ± 6.1991
C2

10 1.09715 ± 0.771387 S2
21 -1.30095 ± 0.763543 S2

32 0.52274 ± 6.20827
C0

20 -32.3269 ± 0.770779 C0
31 0.384408 ± 0.775819

C2
20 0.227447 ± 0.771696 C2

31 -0.707931 ± 0.776999
S0

31 -0.715725 ± 0.755324
S2

31 -1.18586 ± 0.757484
C0

30 -0.280284 ± 0.785759
C2

30 1.04249 ± 0.786224
Coefficient Fit Result Coefficient Fit Result

C0
44 -21.4158 ± 0.781966 C0

55 0.213818 ± 0.78413
C2

44 -0.690403 ± 0.783678 C2
55 -0.674089 ± 0.78570

S0
44 -0.109872 ± 0.786434 S0

55 6.07759 ± 0.783858
S2

44 -0.0355397 ± 0.787626 S2
55 -0.945723 ± 0.78524

C0
43 -0.738286 ± 0.784317 C0

54 2.02852 ± 0.78581
C2

43 0.60811 ± 0.78559 C2
54 -0.187081 ± 0.78689

S0
43 0.697828 ± 0.786366 S0

54 0.356674 ± 0.787165
S2

43 0.767655 ± 0.787814 S2
54 0.253496 ± 0.788684

C0
42 3.80235 ± 7.98292 C0

53 -0.78978 ± 0.776905
C2

42 0.997011 ± 7.9989 C2
53 1.1786 ± 0.77847

S0
42 -0.579774 ± 8.08883 S0

53 -2.59779 ± 0.781566
S2

42 -0.54718 ± 8.1008 S2
53 0.243988 ± 0.783463

C0
41 -0.444079 ± 0.769242 C0

52 6.06004 ± 3.66702
C2

41 0.760549 ± 0.769936 C2
52 0.000679862 ± 3.674

S0
41 -0.279113 ± 0.746484 S0

52 0.0452646 ± 3.71547
S2

41 -0.537755 ± 0.747896 S2
52 -0.0236447 ± 3.7209

C0
40 -13.4083 ± 0.800189 C0

51 -0.913286 ± 0.75785
C2

40 -1.16636 ± 0.801091 C2
51 -0.0953101 ± 0.7580

S0
51 1.19732 ± 0.738142
S0

51 -1.13507 ± 0.739085
C0

50 -1.89068 ± 0.828197
C2

50 0.545038 ± 0.829863

Table C.1: 3-dimensional fit to angular sculpting of the CDF detector.



Appendix D

Propagation of correlated errors

The partial derivatives for substitution into Equation 4.42, in order to propagate the
correlated errors from the α‖,CPodd fitted parameters to the initial transversity ampli-
tudes, A0,‖(0) are given here. For A0(0) these are:

∂|A0(0)|2
∂cτ

=
4∆Γ

c
(1− α‖)(1− αCPodd)αCPodd

(1 + (y − 1)αCPodd)2(2 + ∆Γ
c
cτ)2

(D.1)

∂|A0(0)|2
∂∆Γ

=
4cτ(1− α‖)(1− αCPodd)αCPodd

(1 + (y − 1)αCPodd)2(2 + ∆Γ
c
cτ)2

(D.2)

∂|A0(0)|2
∂α‖

=
(1− αCPOdd)

(1 + (y − 1)αCPodd)
(D.3)

∂|A0(0)|2
∂αCPodd

=
(−α‖(1 + (y − 1)αCPodd)− (y − 1)(1− αCPodd)(1− α‖))

(1 + (y − 1)αCPodd)2
. (D.4)

For A‖(0) the partial derivatives are:

∂|A‖(0)|2
∂cτ

=
4∆Γ

c
α‖(1− αCPodd)αCPodd

(1 + (y − 1)αCPodd)2(2 + ∆Γ
c
cτ)2

(D.5)

∂|A‖(0)|2
∂∆Γ

=
4cτα‖(1− αCPodd)αCPodd

(1 + (y − 1)αCPodd)2(2 + ∆Γ
c
cτ)2

(D.6)

∂|A‖(0)|2
∂α‖

=
−(1− αCPOdd)

(1 + (y − 1)αCPodd)
(D.7)

∂|A‖(0)|2
∂αCPodd

=
−(1− α‖(1 + (y − 1)αCPodd)− (y − 1)(1− αCPodd)(1− α‖))

(1 + (y − 1)αCPodd)2
.(D.8)
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cτ ∆Γ αCPodd α‖
cτ 5.90484e-07 1.46913e-05 -1.89861e-06 1.03847e-06
∆Γ 1.46913e-05 0.00117218 -8.11584e-05 4.39767e-05
αCPodd -1.89861e-06 -8.11584e-05 0.000189205 -0.000114205
α‖ 1.03847e-06 4.39767e-05 -0.000114205 0.000223853

Table D.1: Correlations in statistical errors for paramters used in transformation from
α{‖,CPodd} to A{0,‖} for fit including flavour tagging, with the S-wave KK component in
the likelihood fit.

cτ ∆Γ αCPodd α‖
cτ 6.32898e-07 1.62166e-05 -6.60451e-06 5.53911e-06
∆Γ 1.62166e-05 0.00125199 -0.000151459 0.00010744
αCPodd -6.60451e-06 -0.000151459 0.000999688 -0.00090279
α‖ 5.53911e-06 0.00010744 -0.00090279 0.00099388

Table D.2: Correlations in statistical errors for paramters used in transformation from
α{‖,CPodd} to A{0,‖} for fit without flavour tagging with the S-wave KK component in the
likelihood fit.

cτ ∆Γ αCPodd α‖
cτ 5.90663e-07 1.46933e-05 -1.90319e-06 1.04273e-06
∆Γ 1.46933e-05 0.00117259 -8.13323e-05 4.41253e-05
αCPodd -1.90319e-06 -8.13323e-05 0.000189682 -0.000114706
α‖ 1.04273e-06 4.41253e-05 -0.000114706 0.000224432

Table D.3: Correlations in statistical errors for paramters used in transformation from
α{‖,CPodd} to A{0,‖} for fit including flavour tagging without the S-wave KK component
in the likelihood fit.

cτ ∆Γ αCPodd α‖
cτ 6.22597e-07 1.65845e-05 -2.39201e-06 1.39609e-06
∆Γ 1.65845e-05 0.0012749 -9.84193e-05 5.43697e-05
αCPodd -2.39201e-06 -9.84193e-05 0.000246075 -0.000166969
α‖ 1.39609e-06 5.43697e-05 -0.000166969 0.000274719

Table D.4: Correlations in statistical errors for paramters used in transformation from
α{‖,CPodd} to A{0,‖} for fit without flavour tagging without the S-wave KK component in
the likelihood fit.



Appendix E

Correlation matrices

The correlation matrices for the full fit to data, and for an example high statistics
pseudo experiment are shown here. These are produced by the fit package Minuit [96].
Table E.1 shows the labeling scheme for the paramters in the fit.

Parameter label index Parameter label index
cτs Lifetime 1 εs(OST ) EffSig 19
scτ1 ScaleFac 2 εb(OST ) EffBkg 20
scτ2 ScaleFac2 3 A+(OST ) EffBkgp 21
fsf1 ScaleFrac1 4 εs(SST ) EffSig2 22
m Mean 5 εb(SST ) EffBkg2 23
sm MassScl 6 A+(SST ) EffBkgp 24
α⊥ AlphaCPOdd 7 cos(ψ)1 cosTheta 25
α‖ AlphaPara 8 cos(θ)1 cosPsi1 26
φ‖ PhiPara 9 φ1 Phi1 27
φ⊥ PhiPerp 10 fs FracSig 28

β
J/ψφ
s BetaPrime 11 p1 BGmslop 29
ASW ASWave 12 λ− Lambdap 30
δSW DeltaS 13 λ+ Lambdap 31
∆ms deltaM 14 λ++ Lambdam 32
SD(OST+) DScale 15 fp Fgauss 33
SD(OST−) DScale2 16 f− Fm 34
SD(SST ) DScale21 17 f++ Fpp 35
∆Γ deltaG 18

Table E.1: Labeling of parameters in correlation matrix printout
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Appendix F

Full tables of pulls for all fit
parameters

Parameter Pull mean Pull σ
ASW 0.054 ± 0.03 0.88 ± 0.026
α⊥ -0.15 ± 0.033 0.98 ± 0.026
α‖ 0.16 ± 0.032 0.94 ± 0.027
p1 0.024 ± 0.035 1 ± 0.029
δSW 2.8 ± 0.21 5.5 ± 0.22
fp 0.66 ± 0.033 1 ± 0.025
f− 0.21 ± 0.033 0.93 ± 0.027
f++ 0.2 ± 0.033 0.96 ± 0.027
fs -0.016 ± 0.032 0.96 ± 0.025
Λ− 0.029 ± 0.035 1 ± 0.029
Λ+ 0.22 ± 0.032 0.9 ± 0.025
Λ++ 0.79 ± 0.033 0.96 ± 0.029
cτ -0.019 ± 0.032 0.97 ± 0.026
sm -0.11 ± 0.032 0.96 ± 0.026
m 0.018 ± 0.033 0.98 ± 0.024
φ1 0.023 ± 0.032 0.97 ± 0.025
φ‖ 0.25 ± 0.048 0.65 ± 0.066
scτ1 0.08 ± 0.036 1.1 ± 0.028
scτ2 0.037 ± 0.034 1 ± 0.026
fsf11 -0.42 ± 0.033 0.99 ± 0.026
cos(ψ)1 0.08 ± 0.034 1 ± 0.028
cos(θ)1 0.04 ± 0.033 1 ± 0.025
∆Γ 0.037 ± 0.034 0.99 ± 0.026

Table F.1: Pull study fit results for untagged fit with fixed βJ/ψφs = 0.0, realistic sample size

173
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Parameter Pull mean Pull σ
ASW 0.063 ± 0.026 0.75 ± 0.024
α⊥ -0.15 ± 0.029 0.89 ± 0.024
α‖ 0.14 ± 0.029 0.85 ± 0.024
p1 0.028 ± 0.033 0.97 ± 0.026
SD(SST ) 0.01 ± 0.011 0.33 ± 0.008
SD(OST+) 0.012 ± 0.012 0.35 ± 0.0081
SD(OST−) 0.11 ± 0.012 0.38 ± 0.0098
δSW 0.11 ± 0.012 0.38 ± 0.0098
εb(OST ) 0.0091 ± 0.035 1 ± 0.029
εb(SST ) 0.03 ± 0.035 1 ± 0.03
A+(OST ) 0.024 ± 0.032 0.92 ± 0.025
A+(SST ) 0.047 ± 0.033 1 ± 0.027
εs(OST ) -0.03 ± 0.036 1.1 ± 0.029
εs(SST ) 0.0073 ± 0.034 1 ± 0.031
fp 0.67 ± 0.036 1.1 ± 0.03
f− 0.21 ± 0.031 0.89 ± 0.027
f++ 0.14 ± 0.035 1 ± 0.03
fs -0.077 ± 0.034 1 ± 0.026
Λ− 0.024 ± 0.033 0.99 ± 0.029
Λ+ 0.29 ± 0.03 0.89 ± 0.024
Λ++ 0.84 ± 0.034 1 ± 0.032
cτ 0.053 ± 0.033 0.97 ± 0.028
sm -0.076 ± 0.033 0.99 ± 0.025
m -0.025 ± 0.033 1 ± 0.027
φ1 0.025 ± 0.032 0.95 ± 0.025
φ‖ -0.29 ± 0.064 1.1 ± 0.075
φ⊥ 0.0072 ± 0.029 0.85 ± 0.029
scτ1 0.13 ± 0.035 1 ± 0.029
scτ2 0.053 ± 0.038 1.1 ± 0.031
fsf11 -0.42 ± 0.034 1 ± 0.03
cos(ψ)1 0.038 ± 0.033 1 ± 0.027
cos(θ)1 0.0039 ± 0.034 1 ± 0.028
∆Γ -0.087 ± 0.032 0.97 ± 0.029
∆ms 0.012 ± 0.0067 0.21 ± 0.0061

Table F.2: Pull study fit results for tagged fit with fixed βJ/ψφs =0.0, realistic sample size
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Parameter Pull mean Pull σ
ASW -0.062 ± 0.031 0.88 ± 0.026
α⊥ -0.19 ± 0.03 0.91 ± 0.025
α‖ 0.11 ± 0.031 0.94 ± 0.025
p1 0.0089 ± 0.033 0.98 ± 0.024
βs 0.33 ± 0.031 0.9 ± 0.033
SD(SST ) 0.015 ± 0.01 0.31 ± 0.0075
SD(OST+) 0.003 ± 0.011 0.34 ± 0.0077
SD(OST−) 0.052 ± 0.015 0.43 ± 0.011
δSW 0.052 ± 0.015 0.43 ± 0.011
εb(OST ) 0.017 ± 0.035 1 ± 0.026
εb(SST ) 0.02 ± 0.033 0.99 ± 0.027
A+(OST ) 0.054 ± 0.03 0.92 ± 0.024
A+(SST ) 0.013 ± 0.033 0.99 ± 0.024
εs(OST ) -0.011 ± 0.033 0.98 ± 0.025
εs(SST ) 0.0051 ± 0.033 1 ± 0.027
fp 0.63 ± 0.035 1 ± 0.027
f− 0.2 ± 0.034 0.98 ± 0.032
f++ 0.13 ± 0.034 1 ± 0.029
fs -0.04 ± 0.036 1 ± 0.028
Λ− 0.038 ± 0.034 0.97 ± 0.028
Λ+ 0.2 ± 0.031 0.91 ± 0.025
Λ++ 0.83 ± 0.033 0.99 ± 0.029
cτ -0.22 ± 0.03 0.89 ± 0.025
sm -0.083 ± 0.033 0.98 ± 0.025
m 0.038 ± 0.033 0.99 ± 0.026
φ1 0.024 ± 0.032 0.96 ± 0.026
φ‖ -0.15 ± 0.05 1.2 ± 0.058
φ⊥ 0.053 ± 0.041 1.1 ± 0.051
scτ1 0.088 ± 0.036 1.1 ± 0.029
scτ2 -0.028 ± 0.034 1 ± 0.028
fsf11 -0.45 ± 0.033 0.98 ± 0.026
cos(ψ)1 -0.016 ± 0.034 0.98 ± 0.026
cos(θ)1 -0.016 ± 0.034 1 ± 0.027
∆Γ 0.24 ± 0.032 0.94 ± 0.026
∆ms 0.043 ± 0.013 0.4 ± 0.011

Table F.3: Pull study fit results for tagged fit with fixed βJ/ψφs floating, realistic sample size



Appendix G

Alternative universe inputs

Parameter Uni 1 Uni 2 Uni3 Uni 4 Uni 5 Uni 6 Uni 7 Uni 8
cτ 0.0485376 0.0431136 0.0467222 0.0479733 0.0435036 0.0470618 0.0481373 0.0432942
scτ1 1.33138 1.25479 1.2792 1.29586 1.20609 1.26436 1.28245 1.31733
scτ2 3.35863 2.66445 4.17486 2.7754 4.13995 4.06452 2.61939 2.77312
fsf11 0.92797 0.911962 0.888969 0.896533 0.931649 0.848981 0.857911 0.912806
m 5.36673 5.36661 5.36709 5.36632 5.36603 5.36589 5.36625 5.36697
sm 1.81726 1.72931 1.62249 1.82807 1.80878 1.65638 1.81114 1.8225
α⊥ 0.329356 0.246929 0.208379 0.216926 0.203438 0.311751 0.328833 0.21120
α‖ 0.30832 0.383089 0.34227 0.238227 0.253503 0.316596 0.32298 0.230097

φ‖ 3.10287 1.85547 1.54391 2.36212 2.58462 1.40371 1.77574 2.77451

φ⊥ 4.00734 0.780991 2.89364 5.68146 4.07611 3.19112 2.82485 6.02177

β
J/ψφ
s 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ASW 0.0972382 0.0814032 0.11042 0.0592829 0.0505495 0.0652947 0.12677 0.0764773
δSW 4.86898 4.49777 1.7644 1.4203 5.61291 4.68301 3.98209 0.561049
∆Γ 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
cos(ψ)1 0.210696 0.13839 0.089126 0.0920404 0.184946 0.211708 0.0774938 0.12088
cos(θ)1 -0.0737035 -0.0127692 0.0238879 -0.0608936 0.04536 0.018862 0.0687134 0.0629707
φ1 0.17132 0.134837 0.179712 0.151433 0.108297 0.154011 0.154856 0.114698
fs 0.182083 0.173316 0.179497 0.18552 0.188161 0.190191 0.190268 0.185348
p1 -3.51058 -4.56139 0.0969551 -0.462068 -1.45836 -0.990054 0.32942 -1.60436
Λ− 0.0166336 0.00665507 0.0115273 0.016374 0.00736725 0.00726708 0.00869923 0.013702
Λ+ 0.044876 0.0283433 0.0438055 0.030544 0.0488414 0.0435895 0.0585809 0.0539351
Λ++ 0.0525794 0.0541871 0.0314057 0.041783 0.0203742 0.0364937 0.0352796 0.0235069
fp 0.890572 0.888271 0.892361 0.89066 0.897624 0.85977 0.9049 0.908599
f− 0.156703 0.241715 0.102642 0.130044 0.0854399 0.196921 0.130275 0.076429
f++ 0.695682 0.516151 0.425661 0.695347 0.630538 0.559635 0.858216 0.551804
Parameter Uni 9 Uni 10 Uni 11 Uni 12 Uni 13 Uni 14 Uni 15 Uni 16
cτ 0.0474013 0.0490635 0.0430629 0.0442995 0.0466586 0.04654 0.0467884 0.0476583
scτ1 1.23399 1.22474 1.26654 1.29705 1.26115 1.29173 1.25797 1.32562
scτ2 4.03696 3.04103 2.84346 4.23455 3.58774 3.0222 2.60447 4.18949
fsf11 0.905735 0.913376 0.857147 0.863108 0.927531 0.9226 0.860075 0.832762
m 5.36586 5.36705 5.36661 5.36651 5.36678 5.36643 5.36702 5.36611
sm 1.6902 1.81882 1.78622 1.70577 1.75073 1.71912 1.67429 1.76842
α⊥ 0.245307 0.211084 0.265799 0.304696 0.324884 0.265 0.283612 0.286257
α‖ 0.389162 0.286739 0.297919 0.384272 0.328809 0.2719 0.349935 0.304067

φ‖ 2.12479 1.74204 2.28866 2.09906 2.12609 2.47416 2.05691 2.14135

φ⊥ 3.0328 5.67102 3.39944 1.30452 2.27201 0.898723 0.454564 5.41598

β
J/ψφ
s 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ASW 0.081127 0.12896 0.138608 0.0482121 0.0925161 0.068460 0.0413977 0.116351
δSW 3.80558 5.32683 3.49857 2.8309 1.45382 5.61932 0.532978 5.19981
∆Γ 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
cos(ψ)1 0.134106 0.122312 0.109263 0.133062 0.154713 0.131 0.108625 0.08374
cos(θ)1 -0.00335732 0.0419133 0.0314992 0.0529829 0.0148029 -0.0011 -0.0472706 0.0471503
φ1 0.135411 0.140905 0.138205 0.101471 0.152161 0.121737 0.136595 0.118178
fs 0.174087 0.187647 0.176076 0.191371 0.178038 0.17465 0.172549 0.179677
p1 -3.00459 -3.21415 -2.91335 -0.942078 -0.798538 -0.928 -1.43536 -2.17614
Λ− 0.00538458 0.014377 0.00531193 0.00753525 0.00973217 0.0118 0.00900288 0.00948485
Λ+ 0.0514337 0.0528967 0.0321764 0.0495291 0.0513255 0.03454 0.0469498 0.0415923
Λ++ 0.0553435 0.0232477 0.0245135 0.0549706 0.0481597 0.03701 0.0234051 0.049595
fp 0.874235 0.881585 0.891028 0.90442 0.873208 0.87696 0.891969 0.865252
f− 0.0625045 0.0874061 0.156166 0.30064 0.141432 0.273411 0.0811882 0.182302
f++ 0.6193 0.791976 0.817742 0.471797 0.745994 0.754898 0.659251 0.603105

Table G.1: Randomised inputs for generating coverage adjustment pseudo experiments in
alternative universes for the fit without flavour tagging
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Parameter Uni 1 Uni 2 Uni3 Uni 4 Uni 5 Uni 6 Uni 7 Uni 8
cτ 0.0432173 0.0466444 0.0467537 0.0468813 0.0477369 0.0432672 0.0468162 0.0471502
scτ1 1.26526 1.28996 1.25998 1.25686 1.32318 1.25374 1.27767 1.26312
scτ2 2.85197 3.01888 3.547 2.6288 4.10893 2.68481 4.09527 3.99224
fsf11 0.855979 0.920072 0.924829 0.858844 0.832126 0.909599 0.887107 0.847992
m 5.36664 5.36647 5.36682 5.36706 5.36615 5.36665 5.36713 5.36593
sm 1.79724 1.73028 1.76182 1.68554 1.77948 1.74045 1.63384 1.66767
α⊥ 0.266234 0.2664 0.318902 0.282112 0.28447 0.249413 0.21505 0.307195
α‖ 0.296112 0.272845 0.323776 0.342694 0.301618 0.372385 0.33583 0.312838

φ‖ 2.58851 2.72587 2.46811 2.41688 2.47941 2.26771 2.03699 1.93317

φ⊥ 3.35407 1.29838 2.42728 0.933268 5.01174 1.2016 2.93828 3.18282

β
J/ψφ
s 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ASW 0.125852 0.0677486 0.0876738 0.0453329 0.107416 0.0784691 0.102503 0.0651266
δSW 2.37472 2.17957 0.246557 3.7807 1.14988 2.69263 1.51965 0.578822
∆ms 17.4203 17.558 17.6972 17.4165 17.2649 17.5978 17.2977 18.0444
SD(SST ) 1.04103 0.903192 0.970613 0.708831 1.10703 0.854333 1.00893 0.987731
SD(OST+) 1.12093 0.940915 1.27348 1.10333 0.90202 1.08411 1.0665 1.29371
SD(OST−) 0.707744 1.31954 0.685867 1.1632 0.805173 1.02479 0.928644 1.30043
∆Γ 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
εs(SST ) 0.926215 0.944044 0.951546 0.936306 0.943329 0.927102 0.945549 0.93156
εb(SST ) 0.864963 0.866254 0.866972 0.873009 0.866569 0.874013 0.866101 0.871179

A+(SST ) 0.48363 0.493629 0.50396 0.482743 0.495506 0.485507 0.499488 0.493214
εs(OST ) 0.530538 0.512053 0.53882 0.531774 0.541272 0.536803 0.508727 0.489466
εb(OST ) 0.71848 0.727954 0.71352 0.712421 0.709386 0.716825 0.706522 0.721773

A+(OST ) 0.508251 0.503617 0.493305 0.496565 0.497588 0.488098 0.488457 0.489221
cos(θ)1 0.17098 0.230247 0.195493 0.088124 0.142495 0.153228 0.21401 0.204084
cos(ψ)1 0.0564802 -0.0371032 -0.0501571 0.0280545 0.0695549 0.0149087 0.0990028 -0.0666806
φ1 0.115723 0.113155 0.118409 0.13401 0.104673 0.134433 0.174716 0.161989
fs 0.176872 0.171108 0.187184 0.183603 0.176961 0.170759 0.174753 0.171462
p1 -3.95843 0.272108 -0.646885 -2.29218 -2.585 -3.1459 -4.61713 -4.75646
Λ− 0.00547831 0.0143018 0.0134633 0.0122385 0.00917823 0.0140637 0.00963167 0.016705
Λ+ 0.0273634 0.041269 0.0344873 0.0312654 0.0312548 0.0479791 0.0321409 0.040338
Λ++ 0.047571 0.0203809 0.0454564 0.0422742 0.0352785 0.0334592 0.0363474 0.0234425
fp 0.901339 0.876286 0.900666 0.892677 0.88786 0.886915 0.876512 0.900318
f− 0.173189 0.223673 0.214417 0.320843 0.0504921 0.249821 0.130487 0.207871
f++ 0.740545 0.539799 0.450041 0.849394 0.637548 0.732377 0.709705 0.84869
Parameter Uni 9 Uni 10 Uni 11 Uni 12 Uni 13 Uni 14 Uni 15 Uni 16
cτ 0.0482079 0.0474841 0.0481794 0.0473766 0.0457722 0.0480692 0.0470152 0.0438284
scτ1 1.28086 1.23334 1.20887 1.23675 1.32948 1.28343 1.28782 1.26029
scτ2 2.64274 3.9665 3.88049 3.7355 3.55683 3.67778 3.22062 3.43151
fsf11 0.856727 0.903508 0.89764 0.851654 0.889603 0.871329 0.922651 0.917811
m 5.36629 5.3659 5.36603 5.36711 5.36647 5.36589 5.36621 5.36648
sm 1.82211 1.70141 1.7232 1.79643 1.83109 1.67919 1.83897 1.76357
α⊥ 0.322422 0.247967 0.196461 0.292146 0.275761 0.325867 0.224887 0.28921
α‖ 0.318562 0.377824 0.285819 0.245541 0.316605 0.374275 0.239617 0.236353

φ‖ 2.20867 2.46715 2.05542 1.94557 2.16218 2.77284 2.40864 2.11724

φ⊥ 2.88173 3.05268 1.64 3.97415 0.627106 3.87774 0.458077 4.73695

β
J/ψφ
s 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ASW 0.116046 0.0782403 0.0400511 0.0546117 0.0502018 0.032305 0.096285 0.0499373
δSW 4.37883 2.45647 2.58395 1.4591 4.85068 2.5789 0.833799 5.89658
∆ms 17.2268 17.5717 18.069 17.2466 18.2165 17.2011 17.8135 18.0495
SD(SST ) 1.19797 0.894026 0.794701 0.92357 0.799718 0.969389 0.790846 0.883213
SD(OST+) 1.30294 1.09039 0.976481 0.89166 1.40406 1.16789 0.796768 1.22927
SD(OST−) 0.767956 0.679629 1.30754 0.848395 0.994162 0.718446 0.823849 1.20071
∆Γ 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
εs(SST ) 0.955862 0.926414 0.946102 0.955104 0.957868 0.944301 0.948173 0.957621
εb(SST ) 0.867326 0.875451 0.870614 0.872044 0.868455 0.865682 0.872922 0.879198

A+(SST ) 0.508537 0.508293 0.507208 0.481608 0.487673 0.499392 0.50279 0.50379
εs(OST ) 0.531218 0.508472 0.527043 0.515008 0.518818 0.524868 0.501134 0.503744
εb(OST ) 0.717395 0.710911 0.731714 0.706675 0.712931 0.71424 0.724085 0.719939

A+(OST ) 0.512965 0.49362 0.508861 0.497643 0.491116 0.483188 0.481367 0.511425
cos(θ)1 0.176008 0.179567 0.179731 0.104078 0.139358 0.161903 0.165451 0.204246
cos(ψ)1 -0.0013416 0.0747247 0.0280512 0.0680616 -0.017734 0.0499583 -0.0448446 -0.0023898
φ1 0.159026 0.159728 0.154712 0.154244 0.179041 0.153657 0.167918 0.126116
fs 0.172133 0.170747 0.180496 0.173379 0.174856 0.179267 0.172262 0.18118
p1 -1.26589 0.240422 -1.94293 -4.70976 -2.44748 -2.24152 -3.99001 -2.99492
Λ− 0.00639135 0.0163105 0.0077308 0.014159 0.0124066 0.0156009 0.0120454 0.0129415
Λ+ 0.0229175 0.0446909 0.0472462 0.0234318 0.0248084 0.0276943 0.0481009 0.0341138
Λ++ 0.0321981 0.0553537 0.020261 0.030657 0.0428638 0.03744 0.0211797 0.050413
fp 0.863925 0.864661 0.881883 0.86175 0.89634 0.893635 0.858087 0.893034
f− 0.29982 0.161753 0.164445 0.123794 0.257845 0.322474 0.274869 0.28668
f++ 0.4921 0.627799 0.61564 0.569478 0.771953 0.453613 0.825463 0.729675

Table G.2: Randomised inputs for generating coverage adjustment pseudo experiments rep-
resenting 16 alternative universes for the fit including flavour tagging
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Parameter Uni 1 Uni 2 Uni3 Uni 4 Uni 5 Uni 6 Uni 7 Uni 8
cτ 0.0425647 0.0465308 0.0466573 0.046805 0.0477952 0.0426223 0.0467296 0.0471162
scτ1 1.26541 1.29109 1.25992 1.25668 1.32562 1.25344 1.27831 1.26319
scτ2 2.82025 2.99949 3.56662 2.5806 4.17005 2.64074 4.15538 4.04474
fsf11 0.854522 0.92255 0.9276 0.857562 0.829205 0.911434 0.887562 0.846044
m 5.36662 5.36645 5.3668 5.36704 5.36613 5.36663 5.36711 5.36591
sm 1.79734 1.73037 1.76192 1.68562 1.77958 1.74054 1.63391 1.66774
α⊥ 0.26786 0.26803 0.321544 0.284045 0.286448 0.250715 0.215689 0.309612
α‖ 0.295156 0.271668 0.323083 0.342181 0.300714 0.372154 0.335252 0.312041

φ‖ 1.89213 2.24959 1.57884 1.44553 1.60825 1.05735 0.456957 0.186771

φ⊥ 3.40801 0.974674 2.31096 0.542481 5.37022 0.860114 2.91584 3.20531

β
J/ψφ
s 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ASW 0.147781 0.0765247 0.100961 0.0490344 0.125172 0.0896722 0.119147 0.0733091
δSW 3.93499 5.30209 4.70837 4.73228 6.17646 5.69734 5.52594 5.96337
∆ms 17.414 17.554 17.6955 17.41 17.2559 17.5944 17.2892 18.0485
SD(SST ) 1.04098 0.903156 0.970572 0.708809 1.10698 0.854301 1.00888 0.98769
SD(OST+) 1.12075 0.939993 1.27394 1.10308 0.900937 1.08378 1.0661 1.29424
SD(OST−) 0.705918 1.32384 0.683823 1.16594 0.804323 1.02614 0.92903 1.30454
∆Γ -0.0942111 0.0912517 0.169297 0.0107584 0.0838168 -0.0849825 0.106911 -0.0386071
εs(SST ) 0.934924 0.937089 0.938293 0.948417 0.937617 0.9501 0.936832 0.945348
εb(SST ) 0.862643 0.868914 0.875393 0.862087 0.870091 0.86382 0.872588 0.868653

A+(SST ) 0.498675 0.490018 0.502553 0.499253 0.503702 0.501609 0.48846 0.479439
εs(OST ) 0.519667 0.543626 0.507125 0.504345 0.496669 0.515483 0.489426 0.527995
εb(OST ) 0.728815 0.725242 0.717289 0.719803 0.720592 0.713274 0.713551 0.714139

A+(OST ) 0.498093 0.509872 0.502964 0.481621 0.492429 0.494562 0.506645 0.504672
cos(θ)1 0.206751 0.124798 0.113366 0.181858 0.218201 0.170346 0.243989 0.0988962
cos(ψ)1 -0.0515928 -0.0577678 -0.0451335 -0.00761315 -0.0781663 -0.00659732 0.0902824 0.0596752
φ1 0.124393 0.103914 0.161027 0.148306 0.124709 0.102674 0.116865 0.105174
fs 0.173982 0.191765 0.187902 0.180986 0.179755 0.177398 0.171214 0.170628
p1 -5.02064 -0.812301 -1.21221 -1.79638 -3.25598 -0.925886 -3.03971 0.333896
Λ− 0.0068766 0.0113757 0.00918152 0.00813911 0.00813568 0.0135467 0.00842238 0.0110745
Λ+ 0.0494389 0.0238069 0.0474454 0.0444457 0.0378508 0.0361358 0.0388585 0.0266931
Λ++ 0.0516094 0.0326157 0.0510995 0.0450426 0.0413907 0.0406741 0.0327876 0.0508354
fp 0.883785 0.891695 0.890245 0.90692 0.86456 0.895792 0.877094 0.889219
f− 0.230767 0.0830187 0.0980848 0.310879 0.154962 0.224755 0.208069 0.310361
f++ 0.606248 0.592195 0.810423 0.707492 0.518047 0.62914 0.544675 0.476926
Parameter Uni 9 Uni 10 Uni 11 Uni 12 Uni 13 Uni 14 Uni 15 Uni 16
cτ 0.0483404 0.0475026 0.0483073 0.0473782 0.0455214 0.0481797 0.0469599 0.0432719
scτ1 1.28163 1.23224 1.2068 1.23578 1.33216 1.2843 1.28885 1.26024
scτ2 2.59556 4.0171 3.92474 3.76904 3.57717 3.70706 3.21613 3.4426
fsf11 0.855315 0.904969 0.898742 0.849931 0.89021 0.870815 0.925288 0.920151
m 5.36627 5.36588 5.36601 5.36709 5.36645 5.36587 5.36619 5.36646
sm 1.82222 1.7015 1.72328 1.79654 1.8312 1.67927 1.83908 1.76367
α⊥ 0.325132 0.249241 0.196741 0.294272 0.277571 0.328644 0.225716 0.29128
α‖ 0.31782 0.377644 0.284766 0.244105 0.315844 0.374062 0.238125 0.23483

φ‖ 0.903694 1.57634 1.55339 1.40225 0.782724 2.37183 1.42408 0.665793

φ⊥ 2.84891 3.05125 1.11879 0.344115 0.180073 4.02789 -0.0200077 5.04496

β
J/ψφ
s 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ASW 0.135756 0.0893916 0.0425568 0.0604138 0.0550055 0.0330571 0.111521 0.0546812
δSW 2.74387 2.43678 0.557664 4.26468 4.03498 5.36315 0.833799 1.61601
∆ms 17.2172 17.5678 18.0735 17.2373 18.2235 17.191 17.8138 18.0538
SD(SST ) 1.19791 0.893991 0.794672 0.923533 0.79969 0.969349 0.790818 0.883179
SD(OST+) 1.30352 1.09008 0.975706 0.890534 1.40505 1.16791 0.795249 1.22954
SD(OST−) 0.766733 0.677521 1.31172 0.847977 0.995204 0.716727 0.823186 1.20382
∆Γ 0.214188 -0.0921448 0.11266 0.206307 0.235054 0.0939305 0.134204 0.232485
εs(SST ) 0.938887 0.952512 0.9444 0.946798 0.94078 0.93613 0.948271 0.958795
εb(SST ) 0.878263 0.87811 0.87743 0.861375 0.865179 0.872528 0.874659 0.875286

A+(SST ) 0.498993 0.488341 0.497038 0.491402 0.493186 0.49602 0.484904 0.486126
εs(OST ) 0.516924 0.500527 0.553133 0.489815 0.505636 0.508945 0.53384 0.523356
εb(OST ) 0.732451 0.717532 0.729286 0.720634 0.715601 0.709487 0.708082 0.731263

A+(OST ) 0.499091 0.499798 0.499831 0.484792 0.491805 0.496287 0.496992 0.504704
cos(θ)1 0.156115 0.222728 0.181855 0.216893 0.14176 0.20104 0.118018 0.155197
cos(ψ)1 0.0525496 0.0542359 0.0421743 0.0410489 0.100682 0.0396354 0.0739332 -0.0265977
φ1 0.107556 0.102631 0.137266 0.111983 0.117232 0.132902 0.108016 0.139697
fs 0.1853 0.191632 0.182454 0.170824 0.180333 0.181199 0.17385 0.178032
p1 -4.58517 0.145727 -3.94632 -0.88039 -1.71622 -0.192702 -1.88847 -1.46111
Λ− 0.00543823 0.0124828 0.0133096 0.00560464 0.00605002 0.00698371 0.0135861 0.0090607
Λ+ 0.034947 0.0567756 0.0236939 0.0334942 0.0450014 0.0398885 0.02456 0.0521181
Λ++ 0.0232445 0.0238023 0.0368595 0.021596 0.0478199 0.0457686 0.0188186 0.0453135
fp 0.903626 0.881993 0.882415 0.876045 0.897049 0.907175 0.857797 0.901567
f− 0.0479121 0.147787 0.138837 0.104862 0.253883 0.142571 0.275668 0.222767
f++ 0.750563 0.612134 0.621314 0.540314 0.784541 0.848978 0.824559 0.859856

Table G.3: Randomised inputs for generating coverage adjustment pseudo experiments rep-

resenting 16 alternative universes for the fit including flavour tagging for 1D β
J/ψφ
s scan
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